File size: 7,068 Bytes
bf34d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643c0e8
 
 
bf34d04
 
 
 
 
 
 
643c0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from typing import Dict, List, Optional
import logging
import re

logger = logging.getLogger(__name__)

class PromptEnhancer:
    def __init__(self):
        self.context_keywords = {
            # Éléments de design
            "moderne": "modern clean professional design",
            "vintage": "vintage retro classic design",
            "minimaliste": "minimalist clean simple design",
            "luxe": "luxury elegant premium design",
            
            # Types d'ambiance
            "professionnel": "professional corporate business-like",
            "créatif": "creative artistic innovative",
            "dynamique": "dynamic energetic vibrant",
            "élégant": "elegant sophisticated refined",
            
            # Éléments visuels
            "logo": "prominent logo design professional branding",
            "texte": "clear readable text typography",
            "image": "main visual focal point image",
            "photo": "photographic image realistic",
            
            # Caractéristiques techniques
            "haute qualité": "high quality professional grade",
            "détaillé": "highly detailed intricate",
            "net": "sharp crisp clear",
            "flou": "soft focus gentle blur",
            
            # Styles spécifiques
            "3D": "three dimensional depth realistic",
            "plat": "flat design 2D clean",
            "graphique": "graphic design vector-style",
            "illustré": "illustrated hand-drawn artistic"
        }
        
        self.composition_patterns = {
            # Structure de l'affiche
            "haut": "top aligned composition with {element}",
            "bas": "bottom aligned composition with {element}",
            "centre": "centered composition with {element}",
            "gauche": "left aligned composition with {element}",
            "droite": "right aligned composition with {element}",
            
            # Relations spatiales
            "au-dessus": "{element1} positioned above {element2}",
            "en-dessous": "{element1} positioned below {element2}",
            "à côté": "{element1} next to {element2}",
            "autour": "{element1} surrounding {element2}"
        }
        
        self.emphasis_patterns = {
            "important": "(({})),",  # Double emphase
            "normal": "({}),",       # Emphase simple
            "subtil": "[{}],"        # Emphase légère
        }
        
        self.common_improvements = {
            "faire": "create",
            "mettre": "place",
            "avec": "featuring",
            "contenant": "containing",
            "il y a": "featuring",
            "je veux": "",
            "je souhaite": "",
            "il faut": ""
        }def enhance_prompt(self, user_input: str, style_context: Dict) -> str:
        """Améliore le prompt utilisateur avec un contexte enrichi"""
        enhanced_prompt = user_input.lower()
        logger.debug(f"Prompt initial: {enhanced_prompt}")

        # Nettoyage initial
        enhanced_prompt = self._clean_prompt(enhanced_prompt)
        
        # Détection et amélioration du contexte
        enhanced_prompt = self._add_context(enhanced_prompt)
        
        # Ajout des éléments de style
        enhanced_prompt = self._add_style_elements(enhanced_prompt, style_context)
        
        # Structure et emphase
        enhanced_prompt = self._structure_prompt(enhanced_prompt)
        
        # Ajout des qualificatifs techniques
        enhanced_prompt = self._add_technical_qualifiers(enhanced_prompt)
        
        logger.debug(f"Prompt amélioré: {enhanced_prompt}")
        return enhanced_prompt

    def _clean_prompt(self, prompt: str) -> str:
        """Nettoie et normalise le prompt"""
        # Remplace les expressions communes par leurs versions optimisées
        for old, new in self.common_improvements.items():
            prompt = prompt.replace(old, new)
        
        # Supprime les espaces multiples
        prompt = " ".join(prompt.split())
        
        return prompt

    def _add_context(self, prompt: str) -> str:
        """Ajoute du contexte basé sur les mots-clés détectés"""
        enhanced_parts = []
        words = prompt.split()
        
        for word in words:
            if word in self.context_keywords:
                enhanced_parts.append(self.context_keywords[word])
            else:
                enhanced_parts.append(word)
        
        return " ".join(enhanced_parts)

    def _add_style_elements(self, prompt: str, style_context: Dict) -> str:
        """Ajoute les éléments de style au prompt"""
        style_elements = [
            style_context.get("prompt_prefix", ""),
            prompt,
            style_context.get("layout", ""),
            style_context.get("ambiance", ""),
            style_context.get("palette", ""),
            "professional poster design",
            "high quality"
        ]
        
        return ", ".join(filter(None, style_elements))

    def _structure_prompt(self, prompt: str) -> str:
        """Structure le prompt avec une emphase appropriée"""
        # Identifie les éléments clés
        main_elements = self._identify_main_elements(prompt)
        
        structured_parts = []
        for element, importance in main_elements.items():
            pattern = self.emphasis_patterns.get(importance, "{}") 
            structured_parts.append(pattern.format(element))
        
        return " ".join(structured_parts)

    def _identify_main_elements(self, prompt: str) -> Dict[str, str]:
        """Identifie les éléments principaux et leur importance"""
        elements = {}
        
        # Analyse basique des éléments clés
        words = prompt.split()
        for word in words:
            if len(word) > 3:  # Ignore les mots très courts
                if word in self.context_keywords:
                    elements[word] = "important"
                else:
                    elements[word] = "normal"
                    
        return elements

    def _add_technical_qualifiers(self, prompt: str) -> str:
        """Ajoute des qualificatifs techniques pour améliorer la qualité"""
        technical_qualifiers = [
            "professional quality",
            "highly detailed",
            "masterful composition",
            "perfect lighting",
            "sharp focus",
            "8k resolution"
        ]
        
        return f"{prompt}, {', '.join(technical_qualifiers)}"

    def analyze_prompt_effectiveness(self, prompt: str) -> Dict:
        """Analyse l'efficacité du prompt"""
        return {
            "length": len(prompt),
            "key_elements": len(self._identify_main_elements(prompt)),
            "has_context": any(keyword in prompt for keyword in self.context_keywords),
            "has_composition": any(pattern in prompt for pattern in self.composition_patterns),
            "technical_quality": len([q for q in ["detailed", "quality", "professional"] if q in prompt])
        }