File size: 10,805 Bytes
c290e43
c645839
343349d
c645839
 
 
 
343349d
2bc8286
c645839
6ff0647
343349d
89f7e0d
343349d
c645839
 
343349d
 
 
 
 
c645839
343349d
c645839
 
343349d
c645839
343349d
 
 
 
 
 
 
 
 
 
6ff0647
d20b726
343349d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff0647
c645839
 
 
343349d
 
5647bfd
343349d
 
 
 
 
 
6ff0647
343349d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff0647
343349d
 
 
 
 
6ff0647
343349d
 
 
 
 
 
 
 
 
 
c645839
 
 
343349d
 
 
 
 
 
 
 
 
c645839
d20b726
c645839
343349d
 
 
 
 
c645839
 
 
 
 
 
 
343349d
c645839
 
343349d
 
 
 
 
 
 
 
 
 
 
d20b726
 
343349d
 
 
 
 
d20b726
343349d
c645839
343349d
c645839
343349d
c645839
343349d
6ff0647
 
 
343349d
6ff0647
343349d
6ff0647
 
 
 
343349d
 
 
6ff0647
 
c645839
 
 
 
 
343349d
 
c645839
 
 
 
343349d
c645839
 
343349d
 
 
 
 
 
 
 
 
 
c645839
 
343349d
6ff0647
c645839
 
343349d
c645839
343349d
 
 
 
 
 
 
 
 
 
 
c645839
5647bfd
c645839
 
343349d
 
 
5647bfd
6ff0647
 
 
 
343349d
6ff0647
5647bfd
aa12eaa
343349d
c645839
343349d
 
c645839
343349d
 
 
c645839
343349d
aa12eaa
343349d
 
 
 
 
 
 
5647bfd
6ff0647
b09f3fe
2bc8286
343349d
c645839
343349d
 
c645839
 
343349d
c645839
6ff0647
c645839
 
 
 
 
343349d
c645839
2bc8286
aa12eaa
c645839
c290e43
 
c645839
d6bf8a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import gradio as gr
import os
from PIL import Image, ImageEnhance
import requests
import io
import gc
import json
from typing import Tuple, Optional, Dict, Any
import logging
from dotenv import load_dotenv
import numpy as np
import cv2

# Configuration du logging
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('equity_space.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)
load_dotenv()

# 1. STYLES EQUITY (basés sur les 8 documents)
ART_STYLES = {
    "Renaissance Technologique": {
        "prompt_prefix": """ultra-detailed technical drawing, da vinci style engineering precision, 
        anatomical accuracy, golden ratio proportions, scientific illustration quality, 
        masterful light and shadow, highest level of detail, museum quality artwork""",
        "negative_prompt": "simple sketch, imprecise, cartoon, abstract, low detail",
        "quality_boost": 1.5,
        "style_params": {
            "detail_level": "maximum",
            "technical_precision": True,
            "historical_accuracy": True
        }
    },
    "Innovation Moderne": {
        "prompt_prefix": """cutting-edge technological design, futuristic engineering visual, 
        advanced mechanical detail, precise technical schematic, innovative concept art, 
        professional industrial visualization, high-tech aesthetic""",
        "negative_prompt": "vintage, retro, simplified, abstract",
        "quality_boost": 1.4,
        "style_params": {
            "tech_detail": "ultra",
            "innovation_focus": True
        }
    },
    "Photographie Analytique": {
        "prompt_prefix": """professional analytical photography, ansel adams zone system, 
        ultra sharp detail, perfect exposure, museum grade quality, technical perfection, 
        masterful composition, extreme clarity""",
        "negative_prompt": "blurry, artistic, painterly, low quality",
        "quality_boost": 1.5,
        "style_params": {
            "photographic_precision": True,
            "detail_preservation": "maximum"
        }
    },
    "Vision Futuriste": {
        "prompt_prefix": """advanced technological concept, future engineering visualization, 
        innovative architectural design, sci-fi technical precision, ultra modern aesthetic, 
        professional technical illustration""",
        "negative_prompt": "historical, vintage, traditional, hand-drawn",
        "quality_boost": 1.4,
        "style_params": {
            "future_tech": True,
            "concept_clarity": "high"
        }
    }
}

# 2. OPTIMISATION DE LA QUALITÉ
class ImageEnhancer:
    def __init__(self):
        self.enhancement_pipeline = {
            "technical_detail": self._enhance_technical_detail,
            "color_refinement": self._refine_colors,
            "sharpness_boost": self._boost_sharpness,
            "contrast_optimization": self._optimize_contrast
        }

    def _enhance_technical_detail(self, image: np.ndarray) -> np.ndarray:
        kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
        return cv2.filter2D(image, -1, kernel)

    def _refine_colors(self, image: np.ndarray) -> np.ndarray:
        lab = cv2.cvtColor(image, cv2.COLOR_BGR2Lab)
        l, a, b = cv2.split(lab)
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
        l = clahe.apply(l)
        lab = cv2.merge((l,a,b))
        return cv2.cvtColor(lab, cv2.COLOR_Lab2BGR)

    def _boost_sharpness(self, image: np.ndarray) -> np.ndarray:
        blurred = cv2.GaussianBlur(image, (0, 0), 3)
        return cv2.addWeighted(image, 1.5, blurred, -0.5, 0)

    def _optimize_contrast(self, image: np.ndarray) -> np.ndarray:
        lab = cv2.cvtColor(image, cv2.COLOR_BGR2Lab)
        l, a, b = cv2.split(lab)
        clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
        l = clahe.apply(l)
        lab = cv2.merge((l,a,b))
        return cv2.cvtColor(lab, cv2.COLOR_Lab2BGR)

    def enhance_image(self, image: Image.Image, style_params: Dict) -> Image.Image:
        cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        
        for enhancement, should_apply in style_params.items():
            if should_apply and enhancement in self.enhancement_pipeline:
                cv_image = self.enhancement_pipeline[enhancement](cv_image)
        
        return Image.fromarray(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))

# 3. GÉNÉRATEUR D'IMAGES PRINCIPAL
class ImageGenerator:
    def __init__(self):
        self.API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
        self.enhancer = ImageEnhancer()
        token = os.getenv('HUGGINGFACE_TOKEN')
        if not token:
            logger.error("HUGGINGFACE_TOKEN non trouvé!")
        self.headers = {"Authorization": f"Bearer {token}"}
        logger.info("ImageGenerator initialisé")

    def generate(self, params: Dict[str, Any]) -> Tuple[Optional[Image.Image], str]:
        try:
            style_info = ART_STYLES.get(params["style"])
            if not style_info:
                return None, "⚠️ Style non trouvé"

            # Construction du prompt optimisé
            prompt = f"{params['subject']}, {style_info['prompt_prefix']}"
            if params.get('title'):
                prompt += f", with text: {params['title']}"

            payload = {
                "inputs": prompt,
                "parameters": {
                    "negative_prompt": style_info["negative_prompt"],
                    "num_inference_steps": int(50 * style_info["quality_boost"]),
                    "guidance_scale": min(9.0 * style_info["quality_boost"], 12.0),
                    "width": 1024 if params.get("quality", 35) > 40 else 768,
                    "height": 1024 if params["orientation"] == "Portrait" else 768
                }
            }

            response = requests.post(
                self.API_URL,
                headers=self.headers,
                json=payload,
                timeout=45
            )

            if response.status_code == 200:
                image = Image.open(io.BytesIO(response.content))
                enhanced_image = self.enhancer.enhance_image(
                    image, 
                    style_info["style_params"]
                )
                return enhanced_image, "✨ Création réussie!"
            else:
                error_msg = f"⚠️ Erreur API {response.status_code}: {response.text}"
                logger.error(error_msg)
                return None, error_msg

        except Exception as e:
            error_msg = f"⚠️ Erreur: {str(e)}"
            logger.exception("Erreur génération:")
            return None, error_msg
        finally:
            gc.collect()

# 4. INTERFACE UTILISATEUR
def create_interface():
    generator = ImageGenerator()

    # Style CSS personnalisé
    css = """
    .container { max-width: 1200px; margin: auto; }
    .welcome { 
        text-align: center; 
        margin: 20px 0; 
        padding: 20px; 
        background: linear-gradient(135deg, #1e293b, #334155);
        border-radius: 10px;
        color: white;
    }
    .controls-group { 
        background: #2d3748; 
        padding: 15px; 
        border-radius: 5px; 
        margin: 10px 0;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    """

    with gr.Blocks(css=css) as app:
        gr.HTML("""
            <div class="welcome">
                <h1>🎨 Equity Artisan 3.0</h1>
                <p>Assistant de Création d'Images Professionnelles</p>
            </div>
        """)

        with gr.Column(elem_classes="container"):
            # Format et Style
            with gr.Group(elem_classes="controls-group"):
                with gr.Row():
                    format_size = gr.Dropdown(
                        choices=["A4", "A3", "A2", "A1"],
                        value="A4",
                        label="Format"
                    )
                    orientation = gr.Radio(
                        choices=["Portrait", "Paysage"],
                        value="Portrait",
                        label="Orientation"
                    )
                    style = gr.Dropdown(
                        choices=list(ART_STYLES.keys()),
                        value="Renaissance Technologique",
                        label="Style Artistique"
                    )

            # Description
            with gr.Group(elem_classes="controls-group"):
                subject = gr.Textbox(
                    label="Description",
                    placeholder="Décrivez votre vision technique ou artistique...",
                    lines=3
                )
                title = gr.Textbox(
                    label="Titre (optionnel)",
                    placeholder="Titre à inclure dans l'image..."
                )

            # Paramètres avancés
            with gr.Group(elem_classes="controls-group"):
                with gr.Row():
                    quality = gr.Slider(
                        minimum=30,
                        maximum=50,
                        value=40,
                        label="Qualité"
                    )
                    detail_level = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=8,
                        step=1,
                        label="Niveau de Détail"
                    )

            # Boutons
            with gr.Row():
                generate_btn = gr.Button("✨ Générer", variant="primary")
                clear_btn = gr.Button("🗑️ Effacer")

            # Résultat
            image_output = gr.Image(label="Résultat")
            status = gr.Textbox(label="Status", interactive=False)

        def generate(*args):
            params = {
                "format_size": args[0],
                "orientation": args[1],
                "style": args[2],
                "subject": args[3],
                "title": args[4],
                "quality": args[5],
                "detail_level": args[6]
            }
            return generator.generate(params)

        generate_btn.click(
            generate,
            inputs=[
                format_size,
                orientation,
                style,
                subject,
                title,
                quality,
                detail_level
            ],
            outputs=[image_output, status]
        )

        clear_btn.click(
            lambda: (None, "🗑️ Image effacée"),
            outputs=[image_output, status]
        )

    return app

if __name__ == "__main__":
    app = create_interface()
    app.launch()