Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,8 @@ import logging
|
|
10 |
from dotenv import load_dotenv
|
11 |
import numpy as np
|
12 |
import cv2
|
|
|
|
|
13 |
|
14 |
# Configuration du logging
|
15 |
logging.basicConfig(
|
@@ -23,100 +25,122 @@ logging.basicConfig(
|
|
23 |
logger = logging.getLogger(__name__)
|
24 |
load_dotenv()
|
25 |
|
26 |
-
#
|
27 |
ART_STYLES = {
|
28 |
-
"
|
29 |
-
"prompt_prefix": """ultra
|
30 |
-
|
31 |
-
masterful
|
32 |
-
"negative_prompt": "
|
33 |
"quality_boost": 1.5,
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"
|
|
|
38 |
}
|
39 |
},
|
40 |
"Innovation Moderne": {
|
41 |
-
"prompt_prefix": """cutting-edge technological design,
|
42 |
-
|
43 |
-
|
44 |
-
"negative_prompt": "vintage,
|
45 |
"quality_boost": 1.4,
|
46 |
-
"
|
47 |
-
"
|
48 |
-
"
|
|
|
49 |
}
|
50 |
},
|
51 |
-
"
|
52 |
-
"prompt_prefix": """
|
53 |
-
|
54 |
-
|
55 |
-
"negative_prompt": "
|
56 |
"quality_boost": 1.5,
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"
|
|
|
60 |
}
|
61 |
},
|
62 |
"Vision Futuriste": {
|
63 |
-
"prompt_prefix": """
|
64 |
-
|
65 |
-
professional
|
66 |
-
"negative_prompt": "
|
67 |
"quality_boost": 1.4,
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"
|
|
|
71 |
}
|
72 |
}
|
73 |
}
|
74 |
|
75 |
-
# 2. OPTIMISATION DE LA QUALITÉ
|
76 |
class ImageEnhancer:
|
|
|
|
|
77 |
def __init__(self):
|
78 |
-
self.
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
def
|
86 |
-
|
|
|
|
|
|
|
87 |
return cv2.filter2D(image, -1, kernel)
|
88 |
|
89 |
-
def
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
return cv2.cvtColor(lab, cv2.COLOR_Lab2BGR)
|
108 |
-
|
109 |
-
def enhance_image(self, image: Image.Image, style_params: Dict) -> Image.Image:
|
110 |
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
return Image.fromarray(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))
|
117 |
|
118 |
-
# 3. GÉNÉRATEUR D'IMAGES PRINCIPAL
|
119 |
class ImageGenerator:
|
|
|
|
|
120 |
def __init__(self):
|
121 |
self.API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
122 |
self.enhancer = ImageEnhancer()
|
@@ -126,26 +150,36 @@ class ImageGenerator:
|
|
126 |
self.headers = {"Authorization": f"Bearer {token}"}
|
127 |
logger.info("ImageGenerator initialisé")
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
def generate(self, params: Dict[str, Any]) -> Tuple[Optional[Image.Image], str]:
|
|
|
130 |
try:
|
131 |
style_info = ART_STYLES.get(params["style"])
|
132 |
if not style_info:
|
133 |
return None, "⚠️ Style non trouvé"
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
if params.get('title'):
|
138 |
-
prompt += f", with text: {params['title']}"
|
139 |
|
140 |
payload = {
|
141 |
"inputs": prompt,
|
142 |
-
"parameters":
|
143 |
-
"negative_prompt": style_info["negative_prompt"],
|
144 |
-
"num_inference_steps": int(50 * style_info["quality_boost"]),
|
145 |
-
"guidance_scale": min(9.0 * style_info["quality_boost"], 12.0),
|
146 |
-
"width": 1024 if params.get("quality", 35) > 40 else 768,
|
147 |
-
"height": 1024 if params["orientation"] == "Portrait" else 768
|
148 |
-
}
|
149 |
}
|
150 |
|
151 |
response = requests.post(
|
@@ -158,8 +192,8 @@ class ImageGenerator:
|
|
158 |
if response.status_code == 200:
|
159 |
image = Image.open(io.BytesIO(response.content))
|
160 |
enhanced_image = self.enhancer.enhance_image(
|
161 |
-
image,
|
162 |
-
style_info["
|
163 |
)
|
164 |
return enhanced_image, "✨ Création réussie!"
|
165 |
else:
|
@@ -174,31 +208,11 @@ class ImageGenerator:
|
|
174 |
finally:
|
175 |
gc.collect()
|
176 |
|
177 |
-
# 4. INTERFACE UTILISATEUR
|
178 |
def create_interface():
|
|
|
179 |
generator = ImageGenerator()
|
180 |
|
181 |
-
|
182 |
-
css = """
|
183 |
-
.container { max-width: 1200px; margin: auto; }
|
184 |
-
.welcome {
|
185 |
-
text-align: center;
|
186 |
-
margin: 20px 0;
|
187 |
-
padding: 20px;
|
188 |
-
background: linear-gradient(135deg, #1e293b, #334155);
|
189 |
-
border-radius: 10px;
|
190 |
-
color: white;
|
191 |
-
}
|
192 |
-
.controls-group {
|
193 |
-
background: #2d3748;
|
194 |
-
padding: 15px;
|
195 |
-
border-radius: 5px;
|
196 |
-
margin: 10px 0;
|
197 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
198 |
-
}
|
199 |
-
"""
|
200 |
-
|
201 |
-
with gr.Blocks(css=css) as app:
|
202 |
gr.HTML("""
|
203 |
<div class="welcome">
|
204 |
<h1>🎨 Equity Artisan 3.0</h1>
|
@@ -207,7 +221,6 @@ def create_interface():
|
|
207 |
""")
|
208 |
|
209 |
with gr.Column(elem_classes="container"):
|
210 |
-
# Format et Style
|
211 |
with gr.Group(elem_classes="controls-group"):
|
212 |
with gr.Row():
|
213 |
format_size = gr.Dropdown(
|
@@ -222,15 +235,14 @@ def create_interface():
|
|
222 |
)
|
223 |
style = gr.Dropdown(
|
224 |
choices=list(ART_STYLES.keys()),
|
225 |
-
value="
|
226 |
-
label="Style
|
227 |
)
|
228 |
|
229 |
-
# Description
|
230 |
with gr.Group(elem_classes="controls-group"):
|
231 |
subject = gr.Textbox(
|
232 |
label="Description",
|
233 |
-
placeholder="Décrivez votre vision technique
|
234 |
lines=3
|
235 |
)
|
236 |
title = gr.Textbox(
|
@@ -238,14 +250,13 @@ def create_interface():
|
|
238 |
placeholder="Titre à inclure dans l'image..."
|
239 |
)
|
240 |
|
241 |
-
# Paramètres avancés
|
242 |
with gr.Group(elem_classes="controls-group"):
|
243 |
with gr.Row():
|
244 |
quality = gr.Slider(
|
245 |
minimum=30,
|
246 |
maximum=50,
|
247 |
value=40,
|
248 |
-
label="Qualité"
|
249 |
)
|
250 |
detail_level = gr.Slider(
|
251 |
minimum=1,
|
@@ -255,12 +266,10 @@ def create_interface():
|
|
255 |
label="Niveau de Détail"
|
256 |
)
|
257 |
|
258 |
-
# Boutons
|
259 |
with gr.Row():
|
260 |
generate_btn = gr.Button("✨ Générer", variant="primary")
|
261 |
clear_btn = gr.Button("🗑️ Effacer")
|
262 |
|
263 |
-
# Résultat
|
264 |
image_output = gr.Image(label="Résultat")
|
265 |
status = gr.Textbox(label="Status", interactive=False)
|
266 |
|
|
|
10 |
from dotenv import load_dotenv
|
11 |
import numpy as np
|
12 |
import cv2
|
13 |
+
from skimage import exposure
|
14 |
+
import torch
|
15 |
|
16 |
# Configuration du logging
|
17 |
logging.basicConfig(
|
|
|
25 |
logger = logging.getLogger(__name__)
|
26 |
load_dotenv()
|
27 |
|
28 |
+
# Définition des styles Equity avec paramètres d'optimisation avancés
|
29 |
ART_STYLES = {
|
30 |
+
"Ultra Technique": {
|
31 |
+
"prompt_prefix": """ultra detailed technical drawing, engineering precision,
|
32 |
+
scientific accuracy, professional schematic, architectural detail, perfect measurements,
|
33 |
+
masterful technical illustration, 8k UHD quality, professional engineering visualization""",
|
34 |
+
"negative_prompt": "artistic, painterly, imprecise, blurry, sketchy",
|
35 |
"quality_boost": 1.5,
|
36 |
+
"image_params": {
|
37 |
+
"sharpness": 1.4,
|
38 |
+
"technical_detail": True,
|
39 |
+
"contrast": 1.2,
|
40 |
+
"denoise": 0.3
|
41 |
}
|
42 |
},
|
43 |
"Innovation Moderne": {
|
44 |
+
"prompt_prefix": """cutting-edge technological design, modern engineering aesthetic,
|
45 |
+
innovative technical concept, futuristic schematic, professional industrial visualization,
|
46 |
+
high-tech blueprint, advanced technical detail, ultra modern technical drawing""",
|
47 |
+
"negative_prompt": "vintage, traditional, hand-drawn, artistic",
|
48 |
"quality_boost": 1.4,
|
49 |
+
"image_params": {
|
50 |
+
"sharpness": 1.3,
|
51 |
+
"contrast": 1.3,
|
52 |
+
"clarity": True
|
53 |
}
|
54 |
},
|
55 |
+
"Précision Scientifique": {
|
56 |
+
"prompt_prefix": """scientific visualization, mathematical accuracy,
|
57 |
+
precise technical detail, analytical illustration, professional documentation,
|
58 |
+
engineering excellence, technical mastery, detailed scientific diagram""",
|
59 |
+
"negative_prompt": "artistic interpretation, abstract, undefined",
|
60 |
"quality_boost": 1.5,
|
61 |
+
"image_params": {
|
62 |
+
"detail_enhancement": True,
|
63 |
+
"precision": 1.4,
|
64 |
+
"clarity": True
|
65 |
}
|
66 |
},
|
67 |
"Vision Futuriste": {
|
68 |
+
"prompt_prefix": """future technology concept, advanced engineering design,
|
69 |
+
next-generation technical visualization, innovative blueprint style,
|
70 |
+
high-tech schematic art, professional futuristic documentation""",
|
71 |
+
"negative_prompt": "retro, vintage, traditional technique",
|
72 |
"quality_boost": 1.4,
|
73 |
+
"image_params": {
|
74 |
+
"tech_enhancement": True,
|
75 |
+
"modern_look": True,
|
76 |
+
"sharpness": 1.3
|
77 |
}
|
78 |
}
|
79 |
}
|
80 |
|
|
|
81 |
class ImageEnhancer:
|
82 |
+
"""Classe de traitement et d'amélioration d'image avancée"""
|
83 |
+
|
84 |
def __init__(self):
|
85 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
86 |
+
|
87 |
+
def _apply_clahe(self, image: np.ndarray) -> np.ndarray:
|
88 |
+
"""Amélioration adaptative du contraste"""
|
89 |
+
if len(image.shape) == 3:
|
90 |
+
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
|
91 |
+
l, a, b = cv2.split(lab)
|
92 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
93 |
+
l = clahe.apply(l)
|
94 |
+
lab = cv2.merge((l,a,b))
|
95 |
+
return cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
|
96 |
+
return image
|
97 |
|
98 |
+
def _enhance_details(self, image: np.ndarray) -> np.ndarray:
|
99 |
+
"""Amélioration des détails techniques"""
|
100 |
+
kernel = np.array([[-1,-1,-1],
|
101 |
+
[-1, 9,-1],
|
102 |
+
[-1,-1,-1]])
|
103 |
return cv2.filter2D(image, -1, kernel)
|
104 |
|
105 |
+
def _reduce_noise(self, image: np.ndarray, strength: float = 0.3) -> np.ndarray:
|
106 |
+
"""Réduction du bruit adaptative"""
|
107 |
+
return cv2.fastNlMeansDenoisingColored(
|
108 |
+
image,
|
109 |
+
None,
|
110 |
+
h=10 * strength,
|
111 |
+
hColor=10,
|
112 |
+
templateWindowSize=7,
|
113 |
+
searchWindowSize=21
|
114 |
+
)
|
115 |
+
|
116 |
+
def _adjust_gamma(self, image: np.ndarray, gamma: float = 1.0) -> np.ndarray:
|
117 |
+
"""Ajustement gamma pour l'optimisation des tons"""
|
118 |
+
return exposure.adjust_gamma(image, gamma)
|
119 |
+
|
120 |
+
def enhance_image(self, image: Image.Image, params: Dict) -> Image.Image:
|
121 |
+
"""Pipeline complet d'amélioration d'image"""
|
122 |
+
# Conversion en format CV2
|
|
|
|
|
|
|
123 |
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
124 |
+
|
125 |
+
# Application des améliorations selon les paramètres
|
126 |
+
if params.get('technical_detail', False):
|
127 |
+
cv_image = self._enhance_details(cv_image)
|
128 |
+
|
129 |
+
if params.get('clarity', False):
|
130 |
+
cv_image = self._apply_clahe(cv_image)
|
131 |
+
|
132 |
+
if params.get('denoise', 0) > 0:
|
133 |
+
cv_image = self._reduce_noise(cv_image, params['denoise'])
|
134 |
+
|
135 |
+
if params.get('gamma', 1.0) != 1.0:
|
136 |
+
cv_image = self._adjust_gamma(cv_image, params['gamma'])
|
137 |
+
|
138 |
+
# Reconversion en format PIL
|
139 |
return Image.fromarray(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))
|
140 |
|
|
|
141 |
class ImageGenerator:
|
142 |
+
"""Générateur d'images principal avec optimisations Equity"""
|
143 |
+
|
144 |
def __init__(self):
|
145 |
self.API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
146 |
self.enhancer = ImageEnhancer()
|
|
|
150 |
self.headers = {"Authorization": f"Bearer {token}"}
|
151 |
logger.info("ImageGenerator initialisé")
|
152 |
|
153 |
+
def _prepare_prompt(self, params: Dict[str, Any], style_info: Dict) -> str:
|
154 |
+
"""Prépare le prompt optimisé"""
|
155 |
+
base_prompt = params['subject']
|
156 |
+
if params.get('title'):
|
157 |
+
base_prompt += f", with text: {params['title']}"
|
158 |
+
return f"{base_prompt}, {style_info['prompt_prefix']}"
|
159 |
+
|
160 |
+
def _get_generation_params(self, params: Dict[str, Any], style_info: Dict) -> Dict:
|
161 |
+
"""Configure les paramètres de génération optimaux"""
|
162 |
+
return {
|
163 |
+
"negative_prompt": style_info["negative_prompt"],
|
164 |
+
"num_inference_steps": int(50 * style_info["quality_boost"]),
|
165 |
+
"guidance_scale": min(9.0 * style_info["quality_boost"], 12.0),
|
166 |
+
"width": 1024 if params.get("quality", 35) > 40 else 768,
|
167 |
+
"height": 1024 if params["orientation"] == "Portrait" else 768
|
168 |
+
}
|
169 |
+
|
170 |
def generate(self, params: Dict[str, Any]) -> Tuple[Optional[Image.Image], str]:
|
171 |
+
"""Génération d'image avec optimisations Equity"""
|
172 |
try:
|
173 |
style_info = ART_STYLES.get(params["style"])
|
174 |
if not style_info:
|
175 |
return None, "⚠️ Style non trouvé"
|
176 |
|
177 |
+
prompt = self._prepare_prompt(params, style_info)
|
178 |
+
generation_params = self._get_generation_params(params, style_info)
|
|
|
|
|
179 |
|
180 |
payload = {
|
181 |
"inputs": prompt,
|
182 |
+
"parameters": generation_params
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
}
|
184 |
|
185 |
response = requests.post(
|
|
|
192 |
if response.status_code == 200:
|
193 |
image = Image.open(io.BytesIO(response.content))
|
194 |
enhanced_image = self.enhancer.enhance_image(
|
195 |
+
image,
|
196 |
+
style_info["image_params"]
|
197 |
)
|
198 |
return enhanced_image, "✨ Création réussie!"
|
199 |
else:
|
|
|
208 |
finally:
|
209 |
gc.collect()
|
210 |
|
|
|
211 |
def create_interface():
|
212 |
+
"""Création de l'interface utilisateur Equity"""
|
213 |
generator = ImageGenerator()
|
214 |
|
215 |
+
with gr.Blocks(css="style.css") as app:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
gr.HTML("""
|
217 |
<div class="welcome">
|
218 |
<h1>🎨 Equity Artisan 3.0</h1>
|
|
|
221 |
""")
|
222 |
|
223 |
with gr.Column(elem_classes="container"):
|
|
|
224 |
with gr.Group(elem_classes="controls-group"):
|
225 |
with gr.Row():
|
226 |
format_size = gr.Dropdown(
|
|
|
235 |
)
|
236 |
style = gr.Dropdown(
|
237 |
choices=list(ART_STYLES.keys()),
|
238 |
+
value="Ultra Technique",
|
239 |
+
label="Style Technique"
|
240 |
)
|
241 |
|
|
|
242 |
with gr.Group(elem_classes="controls-group"):
|
243 |
subject = gr.Textbox(
|
244 |
label="Description",
|
245 |
+
placeholder="Décrivez votre vision technique...",
|
246 |
lines=3
|
247 |
)
|
248 |
title = gr.Textbox(
|
|
|
250 |
placeholder="Titre à inclure dans l'image..."
|
251 |
)
|
252 |
|
|
|
253 |
with gr.Group(elem_classes="controls-group"):
|
254 |
with gr.Row():
|
255 |
quality = gr.Slider(
|
256 |
minimum=30,
|
257 |
maximum=50,
|
258 |
value=40,
|
259 |
+
label="Qualité Technique"
|
260 |
)
|
261 |
detail_level = gr.Slider(
|
262 |
minimum=1,
|
|
|
266 |
label="Niveau de Détail"
|
267 |
)
|
268 |
|
|
|
269 |
with gr.Row():
|
270 |
generate_btn = gr.Button("✨ Générer", variant="primary")
|
271 |
clear_btn = gr.Button("🗑️ Effacer")
|
272 |
|
|
|
273 |
image_output = gr.Image(label="Résultat")
|
274 |
status = gr.Textbox(label="Status", interactive=False)
|
275 |
|