Update app.py
Browse files
app.py
CHANGED
@@ -17,268 +17,295 @@ logging.basicConfig(level=logging.DEBUG)
|
|
17 |
logger = logging.getLogger(__name__)
|
18 |
load_dotenv()
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
"
|
23 |
"Renaissance": {
|
24 |
-
"prompt": "renaissance
|
25 |
-
"negative_prompt": "modern, abstract, simple,
|
26 |
"params": {
|
27 |
-
"
|
28 |
-
"num_inference_steps": 50,
|
29 |
"resolution": (4096, 4096),
|
30 |
-
"
|
|
|
31 |
}
|
32 |
},
|
33 |
"Impressionnisme": {
|
34 |
-
"prompt": "impressionist style,
|
35 |
-
"negative_prompt": "sharp details,
|
36 |
"params": {
|
37 |
-
"
|
38 |
-
"num_inference_steps": 40,
|
39 |
"resolution": (2048, 2048),
|
40 |
-
"
|
|
|
41 |
}
|
42 |
},
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
},
|
45 |
-
|
46 |
-
"DIGITAL": {
|
47 |
"Cyberpunk": {
|
48 |
-
"prompt": "cyberpunk style, neon lights, volumetric fog, tech
|
49 |
-
"negative_prompt": "natural, vintage, traditional
|
50 |
"params": {
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"resolution": (3840, 2160),
|
55 |
}
|
56 |
},
|
57 |
-
"
|
58 |
-
"prompt": "
|
59 |
-
"negative_prompt": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"params": {
|
61 |
-
"
|
62 |
-
"
|
63 |
-
"
|
64 |
}
|
65 |
},
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
}
|
68 |
}
|
69 |
|
70 |
-
class
|
|
|
|
|
71 |
def __init__(self):
|
72 |
-
self.
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
"3D": self._3d_text,
|
77 |
-
"Vintage": self._vintage_text,
|
78 |
-
"Graffiti": self._graffiti_text,
|
79 |
-
"Matrix": self._matrix_text
|
80 |
-
}
|
81 |
-
|
82 |
-
def apply_effect(self, image: Image.Image, text: str, effect: str, position: Tuple[int, int]) -> Image.Image:
|
83 |
-
if effect in self.effects:
|
84 |
-
return self.effects[effect](image, text, position)
|
85 |
-
return self._default_text(image, text, position)
|
86 |
-
|
87 |
-
def _realistic_text(self, image: Image.Image, text: str, position: Tuple[int, int]) -> Image.Image:
|
88 |
try:
|
89 |
draw = ImageDraw.Draw(image)
|
90 |
-
#
|
91 |
-
|
|
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
# Dessiner le texte principal
|
99 |
-
draw.text(position, text, font=font, fill=(255, 255, 255))
|
100 |
|
101 |
return image
|
102 |
except Exception as e:
|
103 |
-
logger.error(f"Erreur lors
|
104 |
-
return image
|
105 |
-
|
106 |
-
def _neon_text(self, image: Image.Image, text: str, position: Tuple[int, int]) -> Image.Image:
|
107 |
-
try:
|
108 |
-
# Création d'un calque pour le texte néon
|
109 |
-
text_layer = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
110 |
-
draw = ImageDraw.Draw(text_layer)
|
111 |
-
font = ImageFont.load_default()
|
112 |
-
|
113 |
-
# Effet de glow
|
114 |
-
glow_colors = [(255, 182, 193), (255, 192, 203), (255, 202, 213)]
|
115 |
-
for i, color in enumerate(glow_colors):
|
116 |
-
offset = (3 - i) * 2
|
117 |
-
draw.text((position[0] - offset, position[1] - offset),
|
118 |
-
text, font=font, fill=color + (150,))
|
119 |
-
|
120 |
-
# Texte principal
|
121 |
-
draw.text(position, text, font=font, fill=(255, 255, 255, 255))
|
122 |
-
|
123 |
-
# Fusion des calques
|
124 |
-
return Image.alpha_composite(image.convert('RGBA'), text_layer)
|
125 |
-
except Exception as e:
|
126 |
-
logger.error(f"Erreur lors du rendu néon: {str(e)}")
|
127 |
return image
|
128 |
|
129 |
-
# ... autres méthodes d'effets de texte
|
130 |
-
|
131 |
class ImageGenerator:
|
|
|
|
|
132 |
def __init__(self):
|
133 |
self.api_url = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
140 |
try:
|
141 |
-
# Récupération
|
142 |
-
style_info =
|
143 |
|
144 |
# Construction du prompt final
|
145 |
-
final_prompt = f"{style_info['prompt']}
|
146 |
-
|
147 |
# Paramètres de génération
|
148 |
-
|
149 |
"inputs": final_prompt,
|
150 |
"negative_prompt": style_info["negative_prompt"],
|
151 |
-
"
|
152 |
-
"
|
153 |
}
|
154 |
-
|
155 |
-
# Appel
|
156 |
response = requests.post(
|
157 |
self.api_url,
|
158 |
headers=self.headers,
|
159 |
-
json=
|
160 |
timeout=30
|
161 |
)
|
162 |
-
|
163 |
if response.status_code != 200:
|
|
|
164 |
return None, f"Erreur API: {response.status_code}"
|
165 |
-
|
166 |
-
# Traitement de l'image
|
167 |
image = Image.open(io.BytesIO(response.content))
|
168 |
-
|
169 |
-
# Application des effets de style
|
170 |
image = self._apply_style_effects(image, style_info["params"])
|
171 |
-
|
172 |
-
# Ajout de texte si
|
173 |
-
if text
|
174 |
-
image = self.text_processor.
|
175 |
-
image,
|
176 |
-
|
|
|
177 |
)
|
178 |
-
|
179 |
-
return image, "Génération réussie!"
|
180 |
-
|
181 |
except Exception as e:
|
182 |
-
logger.error(f"Erreur
|
183 |
return None, f"Erreur: {str(e)}"
|
|
|
|
|
184 |
|
185 |
def _apply_style_effects(self, image: Image.Image, style_params: Dict) -> Image.Image:
|
186 |
-
"""
|
187 |
try:
|
188 |
# Conversion pour traitement
|
189 |
img_array = np.array(image)
|
190 |
-
|
191 |
# Application des effets selon les paramètres
|
192 |
-
if style_params.get("
|
193 |
-
img_array = self.
|
194 |
-
|
195 |
-
if style_params.get("
|
196 |
-
img_array = self.
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
199 |
return Image.fromarray(img_array)
|
200 |
-
|
201 |
except Exception as e:
|
202 |
logger.error(f"Erreur lors de l'application des effets: {str(e)}")
|
203 |
return image
|
204 |
|
205 |
-
def
|
206 |
-
|
207 |
-
|
208 |
-
hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
|
209 |
-
# Augmentation de la saturation
|
210 |
-
hsv[..., 1] = np.clip(hsv[..., 1] * intensity, 0, 255)
|
211 |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
|
212 |
|
213 |
-
def
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
def create_interface():
|
|
|
221 |
generator = ImageGenerator()
|
222 |
|
223 |
with gr.Blocks() as demo:
|
224 |
-
gr.HTML("
|
225 |
-
|
226 |
with gr.Row():
|
227 |
-
with gr.Column(
|
228 |
-
# Contrôles
|
229 |
prompt = gr.Textbox(label="Description de l'image")
|
|
|
230 |
style_category = gr.Dropdown(
|
231 |
-
choices=list(
|
232 |
label="Catégorie de Style"
|
233 |
)
|
|
|
234 |
style_name = gr.Dropdown(
|
235 |
label="Style Spécifique"
|
236 |
)
|
237 |
|
238 |
-
# Mise à jour dynamique des styles
|
239 |
def update_styles(category):
|
240 |
return gr.Dropdown.update(
|
241 |
-
choices=list(
|
242 |
)
|
|
|
243 |
style_category.change(
|
244 |
update_styles,
|
245 |
inputs=[style_category],
|
246 |
outputs=[style_name]
|
247 |
)
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
choices=["Réaliste", "Néon", "Holographique", "3D", "Vintage", "Graffiti", "Matrix"],
|
253 |
-
label="Effet de texte"
|
254 |
)
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
259 |
status_output = gr.Textbox(label="Status")
|
260 |
-
|
261 |
-
# Bouton de génération
|
262 |
-
generate_btn = gr.Button("Générer")
|
263 |
|
264 |
-
|
265 |
-
def generate(prompt, category, style, text, effect):
|
266 |
if not prompt or not category or not style:
|
267 |
-
return None, "Veuillez remplir tous les champs requis"
|
268 |
-
|
269 |
-
image, status = generator.
|
270 |
prompt=prompt,
|
271 |
style_category=category,
|
272 |
style_name=style,
|
273 |
-
text=text if text else None
|
274 |
-
text_effect=effect if text else None
|
275 |
)
|
276 |
|
277 |
return image, status
|
278 |
-
|
279 |
generate_btn.click(
|
280 |
-
|
281 |
-
inputs=[prompt, style_category, style_name, text_input
|
282 |
outputs=[image_output, status_output]
|
283 |
)
|
284 |
|
|
|
17 |
logger = logging.getLogger(__name__)
|
18 |
load_dotenv()
|
19 |
|
20 |
+
# Définition complète des styles artistiques
|
21 |
+
ART_STYLES = {
|
22 |
+
"Styles Traditionnels": {
|
23 |
"Renaissance": {
|
24 |
+
"prompt": "renaissance masterpiece, anatomical precision, high detail texture quality, chiaroscuro lighting, oil painting, 4K resolution, museum quality, classical art",
|
25 |
+
"negative_prompt": "modern, abstract, simple, digital",
|
26 |
"params": {
|
27 |
+
"pixel_detail": 0.95,
|
|
|
28 |
"resolution": (4096, 4096),
|
29 |
+
"guidance_scale": 9.0,
|
30 |
+
"steps": 50
|
31 |
}
|
32 |
},
|
33 |
"Impressionnisme": {
|
34 |
+
"prompt": "impressionist style painting, visible brushstrokes, natural light effects, plein air scene, vibrant colors, monet-like technique",
|
35 |
+
"negative_prompt": "sharp details, photorealistic, digital",
|
36 |
"params": {
|
37 |
+
"noise_strength": 0.3,
|
|
|
38 |
"resolution": (2048, 2048),
|
39 |
+
"guidance_scale": 7.5,
|
40 |
+
"steps": 40
|
41 |
}
|
42 |
},
|
43 |
+
"Surréalisme": {
|
44 |
+
"prompt": "surrealist dreamlike scene, dream-like quality, unconscious imagination, unexpected juxtapositions",
|
45 |
+
"negative_prompt": "realistic, ordinary, conventional",
|
46 |
+
"params": {
|
47 |
+
"randomization": 0.3,
|
48 |
+
"guidance_scale": 8.0,
|
49 |
+
"steps": 45
|
50 |
+
}
|
51 |
+
}
|
52 |
},
|
53 |
+
"Rendus Numériques": {
|
|
|
54 |
"Cyberpunk": {
|
55 |
+
"prompt": "cyberpunk style, neon lights, volumetric fog, high tech, dynamic lighting, futuristic cityscape",
|
56 |
+
"negative_prompt": "natural, vintage, traditional",
|
57 |
"params": {
|
58 |
+
"saturation": 1.9,
|
59 |
+
"neon_strength": 1.5,
|
60 |
+
"volumetric": True
|
|
|
61 |
}
|
62 |
},
|
63 |
+
"Synthwave": {
|
64 |
+
"prompt": "synthwave aesthetic, retro-futuristic, neon grid, 80s style, dramatic lighting",
|
65 |
+
"negative_prompt": "realistic, modern, natural",
|
66 |
+
"params": {
|
67 |
+
"saturation": 1.8,
|
68 |
+
"neon_strength": 1.4,
|
69 |
+
"lut_intensity": 0.9
|
70 |
+
}
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"Photographie": {
|
74 |
+
"HDR": {
|
75 |
+
"prompt": "HDR photography, extreme dynamic range, rich details in shadows and highlights, 8K quality",
|
76 |
+
"negative_prompt": "flat lighting, low contrast",
|
77 |
+
"params": {
|
78 |
+
"dynamic_range": 1.5,
|
79 |
+
"resolution": (7680, 4320),
|
80 |
+
"exposure_levels": 3
|
81 |
+
}
|
82 |
+
},
|
83 |
+
"Portrait Studio": {
|
84 |
+
"prompt": "professional studio portrait photography, bokeh effect, controlled lighting, sharp focus on subject",
|
85 |
+
"negative_prompt": "blurry, noisy, low quality",
|
86 |
+
"params": {
|
87 |
+
"bokeh_strength": 0.7,
|
88 |
+
"sharpness": 1.4,
|
89 |
+
"focus_area": 0.5
|
90 |
+
}
|
91 |
+
}
|
92 |
+
},
|
93 |
+
"Art Moderne": {
|
94 |
+
"Flat Design": {
|
95 |
+
"prompt": "flat design style, minimal, clean shapes, solid colors, modern aesthetic",
|
96 |
+
"negative_prompt": "detailed, textured, realistic",
|
97 |
"params": {
|
98 |
+
"simplification": 0.8,
|
99 |
+
"resolution": (1920, 1080),
|
100 |
+
"color_reduction": True
|
101 |
}
|
102 |
},
|
103 |
+
"3D Isométrique": {
|
104 |
+
"prompt": "isometric 3D design, clean geometric shapes, precise angles, modern visualization",
|
105 |
+
"negative_prompt": "realistic perspective, organic shapes",
|
106 |
+
"params": {
|
107 |
+
"geometric_precision": 1.0,
|
108 |
+
"angle_snap": 30,
|
109 |
+
"shading": "flat"
|
110 |
+
}
|
111 |
+
}
|
112 |
}
|
113 |
}
|
114 |
|
115 |
+
class TextProcessor:
|
116 |
+
"""Processeur de texte avec effets de base"""
|
117 |
+
|
118 |
def __init__(self):
|
119 |
+
self.font = ImageFont.load_default()
|
120 |
+
|
121 |
+
def add_text(self, image: Image.Image, text: str, position: Tuple[int, int]) -> Image.Image:
|
122 |
+
"""Ajoute du texte basique à l'image"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
try:
|
124 |
draw = ImageDraw.Draw(image)
|
125 |
+
# Texte simple avec ombre
|
126 |
+
shadow_color = "black"
|
127 |
+
text_color = "white"
|
128 |
|
129 |
+
# Dessine l'ombre
|
130 |
+
draw.text((position[0]+2, position[1]+2), text,
|
131 |
+
font=self.font, fill=shadow_color)
|
132 |
+
# Dessine le texte
|
133 |
+
draw.text(position, text, font=self.font, fill=text_color)
|
|
|
|
|
134 |
|
135 |
return image
|
136 |
except Exception as e:
|
137 |
+
logger.error(f"Erreur lors de l'ajout de texte: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
return image
|
139 |
|
|
|
|
|
140 |
class ImageGenerator:
|
141 |
+
"""Générateur d'images avec styles artistiques"""
|
142 |
+
|
143 |
def __init__(self):
|
144 |
self.api_url = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
145 |
+
token = os.getenv('HUGGINGFACE_TOKEN')
|
146 |
+
if not token:
|
147 |
+
logger.error("HUGGINGFACE_TOKEN non trouvé!")
|
148 |
+
self.headers = {"Authorization": f"Bearer {token}"}
|
149 |
+
self.text_processor = TextProcessor()
|
150 |
+
|
151 |
+
def generate(self, prompt: str, style_category: str, style_name: str,
|
152 |
+
text: Optional[str] = None) -> Tuple[Optional[Image.Image], str]:
|
153 |
try:
|
154 |
+
# Récupération du style
|
155 |
+
style_info = ART_STYLES[style_category][style_name]
|
156 |
|
157 |
# Construction du prompt final
|
158 |
+
final_prompt = f"{prompt}, {style_info['prompt']}"
|
159 |
+
|
160 |
# Paramètres de génération
|
161 |
+
params = {
|
162 |
"inputs": final_prompt,
|
163 |
"negative_prompt": style_info["negative_prompt"],
|
164 |
+
"guidance_scale": style_info["params"].get("guidance_scale", 7.5),
|
165 |
+
"num_inference_steps": style_info["params"].get("steps", 50),
|
166 |
}
|
167 |
+
|
168 |
+
# Appel API
|
169 |
response = requests.post(
|
170 |
self.api_url,
|
171 |
headers=self.headers,
|
172 |
+
json=params,
|
173 |
timeout=30
|
174 |
)
|
175 |
+
|
176 |
if response.status_code != 200:
|
177 |
+
logger.error(f"Erreur API: {response.status_code}")
|
178 |
return None, f"Erreur API: {response.status_code}"
|
179 |
+
|
180 |
+
# Traitement de l'image
|
181 |
image = Image.open(io.BytesIO(response.content))
|
182 |
+
|
183 |
+
# Application des effets de style
|
184 |
image = self._apply_style_effects(image, style_info["params"])
|
185 |
+
|
186 |
+
# Ajout de texte si nécessaire
|
187 |
+
if text:
|
188 |
+
image = self.text_processor.add_text(
|
189 |
+
image,
|
190 |
+
text,
|
191 |
+
(image.width//2, image.height//2)
|
192 |
)
|
193 |
+
|
194 |
+
return image, "✨ Génération réussie!"
|
195 |
+
|
196 |
except Exception as e:
|
197 |
+
logger.error(f"Erreur de génération: {str(e)}")
|
198 |
return None, f"Erreur: {str(e)}"
|
199 |
+
finally:
|
200 |
+
gc.collect()
|
201 |
|
202 |
def _apply_style_effects(self, image: Image.Image, style_params: Dict) -> Image.Image:
|
203 |
+
"""Applique les effets spécifiques au style"""
|
204 |
try:
|
205 |
# Conversion pour traitement
|
206 |
img_array = np.array(image)
|
207 |
+
|
208 |
# Application des effets selon les paramètres
|
209 |
+
if style_params.get("saturation"):
|
210 |
+
img_array = self._adjust_saturation(img_array, style_params["saturation"])
|
211 |
+
|
212 |
+
if style_params.get("neon_strength"):
|
213 |
+
img_array = self._apply_neon_effect(img_array, style_params["neon_strength"])
|
214 |
+
|
215 |
+
if style_params.get("volumetric"):
|
216 |
+
img_array = self._add_volumetric_effect(img_array)
|
217 |
+
|
218 |
+
if style_params.get("bokeh_strength"):
|
219 |
+
img_array = self._apply_bokeh(img_array, style_params["bokeh_strength"])
|
220 |
+
|
221 |
return Image.fromarray(img_array)
|
222 |
+
|
223 |
except Exception as e:
|
224 |
logger.error(f"Erreur lors de l'application des effets: {str(e)}")
|
225 |
return image
|
226 |
|
227 |
+
def _adjust_saturation(self, image: np.ndarray, factor: float) -> np.ndarray:
|
228 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
229 |
+
hsv[..., 1] = np.clip(hsv[..., 1] * factor, 0, 255)
|
|
|
|
|
|
|
230 |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
|
231 |
|
232 |
+
def _apply_neon_effect(self, image: np.ndarray, strength: float) -> np.ndarray:
|
233 |
+
blurred = cv2.GaussianBlur(image, (0, 0), 15)
|
234 |
+
return cv2.addWeighted(image, 1, blurred, strength, 0)
|
235 |
+
|
236 |
+
def _add_volumetric_effect(self, image: np.ndarray) -> np.ndarray:
|
237 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
238 |
+
fog = cv2.GaussianBlur(gray, (0, 0), 20)
|
239 |
+
return cv2.addWeighted(image, 1, cv2.cvtColor(fog, cv2.COLOR_GRAY2RGB), 0.2, 0)
|
240 |
+
|
241 |
+
def _apply_bokeh(self, image: np.ndarray, strength: float) -> np.ndarray:
|
242 |
+
blurred = cv2.GaussianBlur(image, (0, 0), int(30 * strength))
|
243 |
+
mask = np.random.random(image.shape[:2]) > 0.5
|
244 |
+
result = image.copy()
|
245 |
+
result[mask] = blurred[mask]
|
246 |
+
return result
|
247 |
|
248 |
def create_interface():
|
249 |
+
"""Création de l'interface utilisateur"""
|
250 |
generator = ImageGenerator()
|
251 |
|
252 |
with gr.Blocks() as demo:
|
253 |
+
gr.HTML("<h1>🎨 Equity Art Engine Pro</h1>")
|
254 |
+
|
255 |
with gr.Row():
|
256 |
+
with gr.Column():
|
257 |
+
# Contrôles principaux
|
258 |
prompt = gr.Textbox(label="Description de l'image")
|
259 |
+
|
260 |
style_category = gr.Dropdown(
|
261 |
+
choices=list(ART_STYLES.keys()),
|
262 |
label="Catégorie de Style"
|
263 |
)
|
264 |
+
|
265 |
style_name = gr.Dropdown(
|
266 |
label="Style Spécifique"
|
267 |
)
|
268 |
|
269 |
+
# Mise à jour dynamique des styles
|
270 |
def update_styles(category):
|
271 |
return gr.Dropdown.update(
|
272 |
+
choices=list(ART_STYLES[category].keys()) if category else []
|
273 |
)
|
274 |
+
|
275 |
style_category.change(
|
276 |
update_styles,
|
277 |
inputs=[style_category],
|
278 |
outputs=[style_name]
|
279 |
)
|
280 |
+
|
281 |
+
text_input = gr.Textbox(
|
282 |
+
label="Texte à ajouter (optionnel)",
|
283 |
+
placeholder="Laissez vide pour une image sans texte"
|
|
|
|
|
284 |
)
|
285 |
+
|
286 |
+
generate_btn = gr.Button("✨ Générer")
|
287 |
+
|
288 |
+
with gr.Column():
|
289 |
+
# Affichage
|
290 |
+
image_output = gr.Image(label="Image Générée")
|
291 |
status_output = gr.Textbox(label="Status")
|
|
|
|
|
|
|
292 |
|
293 |
+
def generate_image(prompt, category, style, text):
|
|
|
294 |
if not prompt or not category or not style:
|
295 |
+
return None, "⚠️ Veuillez remplir tous les champs requis"
|
296 |
+
|
297 |
+
image, status = generator.generate(
|
298 |
prompt=prompt,
|
299 |
style_category=category,
|
300 |
style_name=style,
|
301 |
+
text=text if text else None
|
|
|
302 |
)
|
303 |
|
304 |
return image, status
|
305 |
+
|
306 |
generate_btn.click(
|
307 |
+
generate_image,
|
308 |
+
inputs=[prompt, style_category, style_name, text_input],
|
309 |
outputs=[image_output, status_output]
|
310 |
)
|
311 |
|