import gradio as gr import os from PIL import Image, ImageEnhance import requests import io import gc import json from typing import Tuple, Optional, Dict, Any import logging from dotenv import load_dotenv # Configuration du logging logging.basicConfig( level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Chargement des variables d'environnement load_dotenv() # Styles artistiques complets ART_STYLES = { # Styles Réalistes "Ultra Réaliste": { "prompt_prefix": "ultra realistic photograph, stunning photorealistic quality, unreal engine 5 quality, octane render, ray tracing, volumetric lighting, subsurface scattering, 8k UHD, cinema quality, masterpiece, perfect composition, award winning photography", "negative_prompt": "artificial, digital art, illustration, painting, drawing, artistic, cartoon, anime, unreal, fake, low quality, blurry, soft, deformed" }, "Photoréaliste": { "prompt_prefix": "hyperrealistic photograph, extremely detailed, studio quality, professional photography, 8k uhd", "negative_prompt": "artistic, painterly, abstract, cartoon, illustration, low quality" }, "Expressionniste": { "prompt_prefix": "expressive painting style, intense emotional art, bold brushstrokes, vibrant colors, van gogh inspired", "negative_prompt": "realistic, subtle, photographic, clean lines, digital art" }, "Impressionniste": { "prompt_prefix": "impressionist painting style, soft light, visible brushstrokes, outdoor scene, monet inspired", "negative_prompt": "sharp details, high contrast, digital, modern" }, "Art Abstrait": { "prompt_prefix": "abstract art, geometric shapes, non-representational, kandinsky style, pure artistic expression", "negative_prompt": "realistic, figurative, photographic, literal" }, "Art Moderne": { "prompt_prefix": "modern art style poster, professional design, contemporary aesthetic", "negative_prompt": "traditional, cluttered, busy design, vintage" }, "Minimaliste": { "prompt_prefix": "minimalist design poster, clean composition, elegant simplicity", "negative_prompt": "complex, detailed, ornate, busy, cluttered" } } # Paramètres de composition COMPOSITION_PARAMS = { "Layouts": { "Centré": "centered composition, balanced layout, harmonious arrangement", "Asymétrique": "dynamic asymmetrical composition, creative balance", "Grille": "grid-based layout, structured composition, organized design", "Diagonal": "diagonal dynamic composition, energetic flow", "Minimaliste": "minimal composition, lots of whitespace, elegant spacing" }, "Ambiances": { "Dramatique": "dramatic lighting, high contrast, intense mood", "Doux": "soft lighting, gentle atmosphere, subtle mood", "Vibrant": "vibrant colors, energetic mood, dynamic atmosphere", "Mystérieux": "mysterious atmosphere, moody lighting, enigmatic feel", "Serein": "peaceful atmosphere, calm mood, tranquil setting" }, "Palette": { "Monochrome": "monochromatic color scheme, sophisticated tones", "Contrasté": "high contrast color palette, bold color combinations", "Pastel": "soft pastel color palette, gentle colors", "Terre": "earthy color palette, natural tones", "Néon": "neon color palette, vibrant glowing colors" } } class ImageGenerator: def __init__(self): self.API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" token = os.getenv('HUGGINGFACE_TOKEN') if not token: logger.error("HUGGINGFACE_TOKEN non trouvé!") self.headers = {"Authorization": f"Bearer {token}"} logger.info("ImageGenerator initialisé") def _build_prompt(self, params: Dict[str, Any]) -> str: try: style_info = ART_STYLES.get(params["style"], ART_STYLES["Art Moderne"]) # Construction du prompt de base base_prompt = f"{params['subject']}" if params.get('title'): base_prompt += f", with text '{params['title']}'" # Ajout des éléments de composition composition_elements = [ style_info['prompt_prefix'], COMPOSITION_PARAMS['Layouts'][params['layout']], COMPOSITION_PARAMS['Ambiances'][params['ambiance']], COMPOSITION_PARAMS['Palette'][params['palette']] ] enhanced_prompt = f"{base_prompt}, {', '.join(composition_elements)}" return enhanced_prompt except Exception as e: logger.error(f"Erreur dans la construction du prompt: {str(e)}") return f"{style_info['prompt_prefix']}, {params['subject']}" def generate(self, params: Dict[str, Any]) -> Tuple[Optional[Image.Image], str]: try: logger.info(f"Début de génération avec paramètres: {json.dumps(params, indent=2)}") if 'Bearer None' in self.headers['Authorization']: return None, "⚠️ Erreur: Token Hugging Face non configuré" prompt = self._build_prompt(params) style_info = ART_STYLES[params["style"]] payload = { "inputs": prompt, "parameters": { "negative_prompt": style_info["negative_prompt"], "num_inference_steps": min(int(35 * (params["quality"]/100)), 40), "guidance_scale": min(7.5 * (params["creativity"]/10), 10.0), "width": 1024 if params.get("quality", 35) > 40 else 768, "height": 1024 if params["orientation"] == "Portrait" else 768 } } logger.debug(f"Payload: {json.dumps(payload, indent=2)}") response = requests.post( self.API_URL, headers=self.headers, json=payload, timeout=45 ) if response.status_code == 200: image = Image.open(io.BytesIO(response.content)) # Post-traitement basé sur les paramètres image = self._enhance_image(image, params) return image, "✨ Création réussie!" else: error_msg = f"⚠️ Erreur API {response.status_code}: {response.text}" logger.error(error_msg) return None, error_msg except Exception as e: error_msg = f"⚠️ Erreur: {str(e)}" logger.exception("Erreur pendant la génération:") return None, error_msg finally: gc.collect() def _enhance_image(self, image: Image.Image, params: Dict[str, Any]) -> Image.Image: """Applique des améliorations post-génération à l'image""" try: # Ajustement du contraste if params.get("contrast", 5) != 5: enhancer = ImageEnhance.Contrast(image) factor = params["contrast"] / 5 image = enhancer.enhance(factor) # Ajustement de la saturation if params.get("saturation", 5) != 5: enhancer = ImageEnhance.Color(image) factor = params["saturation"] / 5 image = enhancer.enhance(factor) return image except Exception as e: logger.warning(f"Erreur lors de l'amélioration de l'image: {e}") return image def create_interface(): logger.info("Création de l'interface Gradio") css = """ .container { max-width: 1200px; margin: auto; } .welcome { text-align: center; margin: 20px 0; padding: 20px; background: #1e293b; border-radius: 10px; } .controls-group { background: #2d3748; padding: 15px; border-radius: 5px; margin: 10px 0; } .advanced-controls { background: #374151; padding: 12px; border-radius: 5px; margin: 8px 0; } """ generator = ImageGenerator() with gr.Blocks(css=css) as app: gr.HTML("""
Assistant de création d'affiches professionnelles