Spaces:
Runtime error
Runtime error
Create app/train.py
Browse files- backend/app/train.py +79 -0
backend/app/train.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
TrainingArguments,
|
7 |
+
Trainer,
|
8 |
+
DataCollatorForLanguageModeling,
|
9 |
+
)
|
10 |
+
import torch
|
11 |
+
from datasets import Dataset
|
12 |
+
|
13 |
+
# -------- Settings --------
|
14 |
+
MODEL_NAME = "google/gemma-1.1-2b-it"
|
15 |
+
DATA_PATH = "./backend/data/pregnancy_dataset.json"
|
16 |
+
SAVE_PATH = "./backend/app/checkpoints"
|
17 |
+
|
18 |
+
# -------- Load Dataset --------
|
19 |
+
def load_dataset():
|
20 |
+
with open(DATA_PATH, "r") as f:
|
21 |
+
data = json.load(f)
|
22 |
+
dataset = Dataset.from_list(data)
|
23 |
+
return dataset
|
24 |
+
|
25 |
+
# -------- Tokenization --------
|
26 |
+
def tokenize_function(example, tokenizer):
|
27 |
+
return tokenizer(
|
28 |
+
f"<start_of_turn> {example['prompt']} <end_of_turn>\n{example['completion']} <end_of_turn>",
|
29 |
+
truncation=True,
|
30 |
+
padding="max_length",
|
31 |
+
max_length=256,
|
32 |
+
)
|
33 |
+
|
34 |
+
# -------- Main Training Function --------
|
35 |
+
def train():
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
38 |
+
|
39 |
+
# Optional: Freeze all except final layers
|
40 |
+
for param in model.base_model.parameters():
|
41 |
+
param.requires_grad = False
|
42 |
+
for param in model.lm_head.parameters():
|
43 |
+
param.requires_grad = True
|
44 |
+
|
45 |
+
# Load and tokenize
|
46 |
+
raw_dataset = load_dataset()
|
47 |
+
tokenized_dataset = raw_dataset.map(lambda x: tokenize_function(x, tokenizer))
|
48 |
+
|
49 |
+
# Data collator
|
50 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
51 |
+
|
52 |
+
# Training arguments
|
53 |
+
training_args = TrainingArguments(
|
54 |
+
output_dir=SAVE_PATH,
|
55 |
+
num_train_epochs=3,
|
56 |
+
per_device_train_batch_size=2,
|
57 |
+
save_steps=50,
|
58 |
+
logging_steps=10,
|
59 |
+
save_total_limit=1,
|
60 |
+
remove_unused_columns=False,
|
61 |
+
report_to="none",
|
62 |
+
)
|
63 |
+
|
64 |
+
# Trainer
|
65 |
+
trainer = Trainer(
|
66 |
+
model=model,
|
67 |
+
args=training_args,
|
68 |
+
train_dataset=tokenized_dataset,
|
69 |
+
tokenizer=tokenizer,
|
70 |
+
data_collator=data_collator,
|
71 |
+
)
|
72 |
+
|
73 |
+
trainer.train()
|
74 |
+
trainer.save_model(SAVE_PATH)
|
75 |
+
tokenizer.save_pretrained(SAVE_PATH)
|
76 |
+
print("✅ Fine-tuned model saved!")
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
train()
|