File size: 10,214 Bytes
70694c9
 
 
 
 
 
 
 
7c5a0e0
2471374
7c5a0e0
70694c9
 
1b1b918
1878cfc
 
1b1b918
1878cfc
70694c9
 
928edc3
1878cfc
 
2471374
1878cfc
1b1b918
928edc3
1878cfc
 
70694c9
 
1b1b918
1878cfc
928edc3
1878cfc
 
 
1b1b918
 
1878cfc
 
 
 
2471374
1878cfc
 
1b1b918
 
1878cfc
 
 
2471374
 
1878cfc
 
 
 
 
 
1b1b918
2471374
1878cfc
 
 
2471374
1878cfc
928edc3
1878cfc
 
 
 
 
 
928edc3
1b1b918
928edc3
 
 
1878cfc
 
 
 
 
7c5a0e0
1878cfc
 
 
 
 
 
 
1b1b918
 
1878cfc
70694c9
 
1b1b918
1878cfc
 
1b1b918
 
 
1878cfc
 
 
1b1b918
 
1878cfc
 
 
1b1b918
5366108
1b1b918
 
928edc3
1b1b918
 
 
 
7c5a0e0
1b1b918
 
928edc3
1b1b918
 
928edc3
1b1b918
 
 
 
928edc3
1b1b918
 
 
 
 
 
 
 
7c5a0e0
90c1aa2
1878cfc
1b1b918
5366108
928edc3
1b1b918
 
 
 
 
5366108
7c5a0e0
 
1b1b918
 
 
 
 
 
7c5a0e0
1b1b918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878cfc
1b1b918
5366108
90c1aa2
1b1b918
 
 
 
 
 
 
 
1878cfc
1b1b918
928edc3
1b1b918
1878cfc
 
 
 
 
 
1b1b918
1878cfc
1b1b918
1878cfc
 
 
 
 
 
 
 
70694c9
 
928edc3
1b1b918
70694c9
1b1b918
 
 
70694c9
1b1b918
70694c9
 
1b1b918
1878cfc
2471374
1878cfc
 
1b1b918
 
1878cfc
 
 
 
 
 
 
1b1b918
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
import io
import base64
import os
from datetime import datetime, timedelta
import math
from pypinyin import lazy_pinyin, Style
from matplotlib.backends.backend_pdf import PdfPages

def get_font(size=14):
    """Loads a specific font file, falling back to a default if not found."""
    font_path = "simHei.ttc"
    if not os.path.exists(font_path):
        font_path = "SimHei.ttf"  # Fallback font
    return font_manager.FontProperties(fname=font_path, size=size)

def get_pinyin_abbr(text):
    """Gets the first letter of the Pinyin for the first two Chinese characters of a text."""
    if not text:
        return ""
    # Extract the first two Chinese characters
    chars = [c for c in text if '\u4e00' <= c <= '\u9fff']
    chars = chars[:2]
    # Get the first letter of the Pinyin
    pinyin_list = lazy_pinyin(chars, style=Style.FIRST_LETTER)
    return ''.join(pinyin_list).upper()

def process_schedule(file):
    """Processes the uploaded Excel file to extract and clean movie schedule data."""
    try:
        # Try to read the date from a specific cell
        date_df = pd.read_excel(file, header=None, skiprows=7, nrows=1, usecols=[3])
        date_str = pd.to_datetime(date_df.iloc[0, 0]).strftime('%Y-%m-%d')
        base_date = pd.to_datetime(date_str).date()
    except Exception:
        # Fallback to today's date if reading fails
        date_str = datetime.today().strftime('%Y-%m-%d')
        base_date = datetime.today().date()
    
    try:
        # Read the main schedule data
        df = pd.read_excel(file, header=9, usecols=[1, 2, 4, 5])
        df.columns = ['Hall', 'StartTime', 'EndTime', 'Movie']
        
        # Clean and process the data
        df['Hall'] = df['Hall'].ffill()
        df.dropna(subset=['StartTime', 'EndTime', 'Movie'], inplace=True)
        df['Hall'] = df['Hall'].astype(str).str.extract(r'(\d+号)')
        
        # Convert times to datetime objects
        df['StartTime_dt'] = pd.to_datetime(df['StartTime'], format='%H:%M', errors='coerce').apply(
            lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t
        )
        df['EndTime_dt'] = pd.to_datetime(df['EndTime'], format='%H:%M', errors='coerce').apply(
            lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t
        )
        
        # Handle overnight screenings
        df.loc[df['EndTime_dt'] < df['StartTime_dt'], 'EndTime_dt'] += timedelta(days=1)
        df = df.sort_values(['Hall', 'StartTime_dt'])
        
        # Merge consecutive screenings of the same movie
        merged_rows = []
        for hall, group in df.groupby('Hall'):
            group = group.sort_values('StartTime_dt')
            current = None
            for _, row in group.iterrows():
                if current is None:
                    current = row.copy()
                else:
                    if row['Movie'] == current['Movie']:
                        current['EndTime_dt'] = row['EndTime_dt'] # Extend the end time
                    else:
                        merged_rows.append(current)
                        current = row.copy()
            if current is not None:
                merged_rows.append(current)
        
        merged_df = pd.DataFrame(merged_rows)
        
        # Adjust start and end times
        merged_df['StartTime_dt'] = merged_df['StartTime_dt'] - timedelta(minutes=10)
        merged_df['EndTime_dt'] = merged_df['EndTime_dt'] - timedelta(minutes=5)
        
        merged_df['StartTime_str'] = merged_df['StartTime_dt'].dt.strftime('%H:%M')
        merged_df['EndTime_str'] = merged_df['EndTime_dt'].dt.strftime('%H:%M')
        
        return merged_df[['Hall', 'Movie', 'StartTime_str', 'EndTime_str']], date_str
    except Exception as e:
        st.error(f"An error occurred during data processing: {e}")
        return None, date_str

def create_print_layout(data, date_str):
    """Creates PNG and PDF layouts for the schedule, designed to fill an A4 page."""
    if data is None or data.empty:
        return None

    # --- Figure setup for both PNG and PDF ---
    # We create two figures to handle potential differences in rendering pipelines
    png_fig = plt.figure(figsize=(8.27, 11.69), dpi=300)
    png_ax = png_fig.add_subplot(111)
    png_ax.set_axis_off()
    png_fig.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)

    pdf_fig = plt.figure(figsize=(8.27, 11.69), dpi=300)
    pdf_ax = pdf_fig.add_subplot(111)
    pdf_ax.set_axis_off()
    pdf_fig.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)

    def process_figure(fig, ax):
        """The core logic to draw the schedule on a given matplotlib axis."""
        
        # --- Dynamic Calculation for Layout ---
        halls = sorted(data['Hall'].unique(), key=lambda h: int(h.replace('号','')))
        num_movies = len(data)
        num_halls = len(halls)
        
        # Total slots = one for each movie + one for each separator + 2 for padding
        totalA = num_movies + (num_halls - 1) + 2
        
        available_height = 0.95 # Usable portion of the page
        line_height = available_height / totalA
        
        # --- Dynamic Font Size Calculation ---
        # Base font size is proportional to the line height to ensure it fits
        # The factor (e.g., 60) is an empirical value that provides a good look
        dynamic_font_size = line_height * 60 
        
        main_font = get_font(dynamic_font_size)
        hall_font = get_font(dynamic_font_size * 1.2) # Make hall font slightly larger
        date_font = get_font(12)

        # Draw the date at the top
        ax.text(0.01, 0.98, date_str, ha='left', va='top', fontproperties=date_font, color='#A9A9A9', transform=ax.transAxes)
        
        y_position = 0.96 # Starting y-position from the top
        
        for i, hall in enumerate(halls):
            hall_data = data[data['Hall'] == hall]
            hall_num_text = f"{hall.replace('号', '')}"
            movie_count = 1
            
            # Draw Hall Number (only once per hall block)
            ax.text(0.03, y_position - (line_height / 2), hall_num_text,
                    fontsize=dynamic_font_size * 1.5, fontweight='bold', ha='center', va='center', 
                    fontproperties=hall_font, transform=ax.transAxes)

            for _, row in hall_data.iterrows():
                pinyin_abbr = get_pinyin_abbr(row['Movie'])
                
                # --- Content Layout per line ---
                # Column positions are defined as fractions of the page width
                x_movie_name = 0.48
                x_movie_num = 0.1
                x_pinyin = 0.18
                x_time = 0.82
                
                # 1. Movie Name (Right-aligned in its zone)
                ax.text(x_movie_name, y_position, row['Movie'],
                        ha='right', va='center', fontproperties=main_font, transform=ax.transAxes)

                # 2. Sequence Number (Left-aligned)
                ax.text(x_movie_num, y_position, f"{movie_count}.",
                        ha='left', va='center', fontproperties=main_font, transform=ax.transAxes)

                # 3. Pinyin Abbreviation (Left-aligned)
                ax.text(x_pinyin, y_position, pinyin_abbr,
                        ha='left', va='center', fontproperties=main_font, transform=ax.transAxes)

                # 4. Time (Left-aligned)
                time_str = f"{row['StartTime_str']} - {row['EndTime_str']}"
                ax.text(x_time, y_position, time_str,
                        ha='left', va='center', fontproperties=main_font, transform=ax.transAxes)
                
                y_position -= line_height
                movie_count += 1

            # Add a separator line after each hall block, except for the last one
            if i < num_halls - 1:
                y_position -= (line_height / 2) # small gap for the line
                ax.axhline(y=y_position, xmin=0.02, xmax=0.98, color='black', linewidth=0.8)
                y_position -= (line_height / 2) # gap after the line

    # --- Generate Outputs ---
    # Process both figures with the same logic
    process_figure(png_fig, png_ax)
    process_figure(pdf_fig, pdf_ax)
    
    # Save PNG to a buffer
    png_buffer = io.BytesIO()
    png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.05)
    png_buffer.seek(0)
    image_base64 = base64.b64encode(png_buffer.getvalue()).decode()
    plt.close(png_fig)
    
    # Save PDF to a buffer
    pdf_buffer = io.BytesIO()
    pdf_fig.savefig(pdf_buffer, format='pdf', bbox_inches='tight', pad_inches=0.05)
    pdf_buffer.seek(0)
    pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
    plt.close(pdf_fig)
    
    return {
        'png': f"data:image/png;base64,{image_base64}",
        'pdf': f"data:application/pdf;base64,{pdf_base64}"
    }

def display_pdf(base64_pdf):
    """Generates the HTML to embed a PDF in Streamlit."""
    return f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'

# --- Streamlit App Main ---
st.set_page_config(page_title="LED Screen Schedule Printer", layout="wide")
st.title("LED Screen Schedule Printer")

uploaded_file = st.file_uploader("Select '放映时间核对表.xls' file", type=["xls"])

if uploaded_file:
    with st.spinner("Processing file, please wait..."):
        schedule, date_str = process_schedule(uploaded_file)
        if schedule is not None:
            output = create_print_layout(schedule, date_str)
            
            # Use tabs for PDF and PNG previews
            tab1, tab2 = st.tabs(["PDF Preview", "PNG Preview"])
            
            with tab1:
                st.markdown(display_pdf(output['pdf']), unsafe_allow_html=True)
            
            with tab2:
                st.image(output['png'], use_container_width=True)
        else:
            st.error("Could not process the file. Please check if the file format and content are correct.")