File size: 10,061 Bytes
70694c9
 
 
 
 
 
 
 
 
2471374
70694c9
 
5366108
2471374
1878cfc
 
 
 
70694c9
 
2471374
1878cfc
 
2471374
1878cfc
2471374
 
1878cfc
 
70694c9
 
2471374
1878cfc
2471374
1878cfc
 
 
5366108
2471374
1878cfc
 
 
 
2471374
1878cfc
 
2471374
 
1878cfc
 
 
2471374
 
1878cfc
 
 
 
 
 
2471374
1878cfc
 
 
2471374
1878cfc
2471374
1878cfc
 
 
 
 
 
 
2471374
1878cfc
 
 
 
 
 
 
 
2471374
1878cfc
 
 
2471374
1878cfc
 
 
 
2471374
1878cfc
70694c9
 
2471374
1878cfc
 
2471374
 
1878cfc
 
 
 
 
 
 
 
 
 
2471374
 
 
 
 
 
 
 
5366108
 
 
 
2471374
 
 
 
 
 
 
 
 
 
 
90c1aa2
2471374
 
5366108
 
2471374
 
 
 
 
 
5366108
90c1aa2
1878cfc
2471374
 
 
 
5366108
1878cfc
5366108
2471374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878cfc
2471374
5366108
1878cfc
2471374
 
 
 
 
 
90c1aa2
2471374
1878cfc
2471374
1878cfc
5366108
1878cfc
 
 
 
 
 
5366108
1878cfc
2471374
1878cfc
 
 
 
 
 
 
 
 
70694c9
 
2471374
 
70694c9
2471374
5366108
 
70694c9
2471374
70694c9
 
5366108
1878cfc
2471374
1878cfc
 
2471374
 
1878cfc
 
 
 
 
 
 
2471374
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
import io
import base64
import os
from datetime import datetime, timedelta
from matplotlib.backends.backend_pdf import PdfPages
from pypinyin import lazy_pinyin, Style

def get_font(size=14):
    """Loads the SimHei font for Chinese character support."""
    # Prioritize 'simHei.ttc' if it exists, otherwise fall back to 'SimHei.ttf'
    font_path = "simHei.ttc"
    if not os.path.exists(font_path):
        font_path = "SimHei.ttf"
    return font_manager.FontProperties(fname=font_path, size=size)

def get_pinyin_abbr(text):
    """Gets the first letter of the Pinyin for the first two Chinese characters of a text."""
    if not text:
        return ""
    # Extract the first two Chinese characters
    chars = [c for c in text if '\u4e00' <= c <= '\u9fff']
    chars = chars[:2]
    # Get the first letter of the pinyin for each character
    pinyin_list = lazy_pinyin(chars, style=Style.FIRST_LETTER)
    return ''.join(pinyin_list).upper()

def process_schedule(file):
    """Processes the uploaded Excel file to extract and clean movie schedule data."""
    try:
        # Try to read the date from a specific cell
        date_df = pd.read_excel(file, header=None, skiprows=7, nrows=1, usecols=[3])
        date_str = pd.to_datetime(date_df.iloc[0, 0]).strftime('%Y-%m-%d')
        base_date = pd.to_datetime(date_str).date()
    except Exception:
        # Fallback to the current date if reading fails
        date_str = datetime.today().strftime('%Y-%m-%d')
        base_date = datetime.today().date()
    
    try:
        # Read the main schedule data
        df = pd.read_excel(file, header=9, usecols=[1, 2, 4, 5])
        df.columns = ['Hall', 'StartTime', 'EndTime', 'Movie']
        
        # Data cleaning
        df['Hall'] = df['Hall'].ffill()
        df.dropna(subset=['StartTime', 'EndTime', 'Movie'], inplace=True)
        df['Hall'] = df['Hall'].astype(str).str.extract(r'(\d+号)')
        
        # Convert times to datetime objects
        df['StartTime_dt'] = pd.to_datetime(df['StartTime'], format='%H:%M', errors='coerce').apply(
            lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t
        )
        df['EndTime_dt'] = pd.to_datetime(df['EndTime'], format='%H:%M', errors='coerce').apply(
            lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t
        )
        # Handle overnight screenings
        df.loc[df['EndTime_dt'] < df['StartTime_dt'], 'EndTime_dt'] += timedelta(days=1)
        df = df.sort_values(['Hall', 'StartTime_dt'])
        
        # Merge consecutive screenings of the same movie
        merged_rows = []
        for _, group in df.groupby('Hall'):
            group = group.sort_values('StartTime_dt')
            current = None
            for _, row in group.iterrows():
                if current is None:
                    current = row.copy()
                else:
                    if row['Movie'] == current['Movie']:
                        current['EndTime_dt'] = row['EndTime_dt'] # Extend the end time
                    else:
                        merged_rows.append(current)
                        current = row.copy()
            if current is not None:
                merged_rows.append(current)
        
        merged_df = pd.DataFrame(merged_rows)
        
        # Adjust times: start 10 mins earlier, end 5 mins earlier
        merged_df['StartTime_dt'] = merged_df['StartTime_dt'] - timedelta(minutes=10)
        merged_df['EndTime_dt'] = merged_df['EndTime_dt'] - timedelta(minutes=5)
        
        # Format times back to strings
        merged_df['StartTime_str'] = merged_df['StartTime_dt'].dt.strftime('%H:%M')
        merged_df['EndTime_str'] = merged_df['EndTime_dt'].dt.strftime('%H:%M')
        
        return merged_df[['Hall', 'Movie', 'StartTime_str', 'EndTime_str']], date_str
    except Exception:
        return None, date_str

def create_print_layout(data, date_str):
    """Generates the print layout as PNG and PDF files based on the schedule data."""
    if data is None or data.empty:
        return None

    # Create figures for PNG and PDF output
    png_fig = plt.figure(figsize=(8.27, 11.69), dpi=300)
    png_ax = png_fig.add_subplot(111)
    png_ax.set_axis_off()
    png_fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)
    
    pdf_fig = plt.figure(figsize=(8.27, 11.69), dpi=300)
    pdf_ax = pdf_fig.add_subplot(111)
    pdf_ax.set_axis_off()
    pdf_fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)
    
    def process_figure(fig, ax):
        """A helper function to draw the schedule on a given matplotlib Axes object."""
        halls = sorted(data['Hall'].unique(), key=lambda h: int(h.replace('号','')) if h else 0)
        
        # --- Dynamic Row and Font Size Calculation ---
        total_movie_lines = len(data)
        if total_movie_lines == 0:
            return

        num_halls = len(halls)
        num_separators = num_halls - 1 if num_halls > 1 else 0

        # Total vertical slots include movies, separators, and padding
        num_slots = total_movie_lines + num_separators + 2 # "+2" for top/bottom padding

        ax_top = 0.98
        ax_bottom = 0.02
        ax_height_fraction = ax_top - ax_bottom
        fig_height_inches = 11.69

        # Calculate font size to be 90% of the calculated row height
        slot_height_points = (fig_height_inches * ax_height_fraction * 72) / num_slots
        font_size = slot_height_points * 0.9
        
        content_font = get_font(font_size)
        hall_font = get_font(font_size * 1.1) # Hall font is slightly larger
        date_font = get_font(12)

        # --- Drawing Logic ---
        ax.text(0.0, 1.0, date_str, color='#A9A9A9',
                ha='left', va='top', fontproperties=date_font, transform=ax.transAxes)

        line_height = ax_height_fraction / num_slots
        y_position = ax_top - line_height  # Start after top padding

        for i, hall in enumerate(halls):
            hall_data = data[data['Hall'] == hall]
            hall_num = hall.replace("号", "")
            
            # Use a flag to print the hall number only once per hall
            is_first_movie_in_hall = True
            movie_count = 1
            
            for _, row in hall_data.iterrows():
                # Display Hall Number once for the block, on the same line as the first movie
                if is_first_movie_in_hall:
                    ax.text(0.03, y_position, f"${hall_num}^{{\\#}}$",
                            fontweight='bold', ha='left', va='top',
                            fontproperties=hall_font, transform=ax.transAxes, zorder=2)
                    is_first_movie_in_hall = False

                # --- New Content Layout ---
                # Left-aligned content: Seq. Number, Pinyin, Time
                ax.text(0.12, y_position, f"{movie_count}.", fontproperties=content_font, ha='left', va='top', transform=ax.transAxes)
                ax.text(0.18, y_position, get_pinyin_abbr(row['Movie']), fontproperties=content_font, ha='left', va='top', transform=ax.transAxes)
                ax.text(0.28, y_position, f"{row['StartTime_str']} - {row['EndTime_str']}", fontproperties=content_font, ha='left', va='top', transform=ax.transAxes)

                # Right-aligned content: Movie Name
                ax.text(0.97, y_position, row['Movie'], fontproperties=content_font, ha='right', va='top', transform=ax.transAxes, clip_on=True)
                
                y_position -= line_height
                movie_count += 1
            
            # --- Separator Line ---
            if i < num_separators:
                # The line is drawn in the middle of the separator's allocated slot
                line_y = y_position + (line_height / 2)
                ax.axhline(y=line_y, color='black', linewidth=0.8, xmin=0.03, xmax=0.97)
                y_position -= line_height # Move down past the separator slot

    # Process both the PNG and PDF figures
    process_figure(png_fig, png_ax)
    process_figure(pdf_fig, pdf_ax)
    
    # Save PNG to a buffer
    png_buffer = io.BytesIO()
    png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.05)
    png_buffer.seek(0)
    image_base64 = base64.b64encode(png_buffer.getvalue()).decode()
    plt.close(png_fig)
    
    # Save PDF to a buffer
    pdf_buffer = io.BytesIO()
    with PdfPages(pdf_buffer, 'w') as pdf:
        pdf.savefig(pdf_fig, bbox_inches='tight', pad_inches=0.05)
    pdf_buffer.seek(0)
    pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
    plt.close(pdf_fig)
    
    return {
        'png': f"data:image/png;base64,{image_base64}",
        'pdf': f"data:application/pdf;base64,{pdf_base64}"
    }

def display_pdf(base64_pdf):
    """Embeds the PDF in the Streamlit app for display."""
    return f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'

# --- Streamlit App UI ---
st.set_page_config(page_title="LED 屏幕时间表打印", layout="wide")
st.title("LED 屏幕时间表打印")

uploaded_file = st.file_uploader("选择打开【放映时间核对表.xls】文件", type=["xls"])

if uploaded_file:
    with st.spinner("文件正在处理中,请稍候..."):
        schedule, date_str = process_schedule(uploaded_file)
        if schedule is not None:
            output = create_print_layout(schedule, date_str)
            
            # Create tabs for PDF and PNG previews
            tab1, tab2 = st.tabs(["PDF 预览", "PNG 预览"])
            
            with tab1:
                st.markdown(display_pdf(output['pdf']), unsafe_allow_html=True)
            
            with tab2:
                st.image(output['png'], use_container_width=True)
        else:
            st.error("无法处理文件,请检查文件格式或内容是否正确。")