File size: 10,377 Bytes
70694c9
 
 
 
 
 
 
 
7c5a0e0
2471374
7c5a0e0
70694c9
 
7c5a0e0
1878cfc
 
7c5a0e0
1878cfc
70694c9
 
7c5a0e0
1878cfc
 
2471374
1878cfc
2471374
 
1878cfc
 
70694c9
 
2471374
1878cfc
7c5a0e0
1878cfc
 
 
5366108
2471374
1878cfc
 
 
 
2471374
1878cfc
 
2471374
7c5a0e0
1878cfc
 
 
2471374
 
1878cfc
 
 
 
 
 
7c5a0e0
2471374
1878cfc
 
 
2471374
1878cfc
2471374
1878cfc
 
 
 
 
7c5a0e0
 
1878cfc
7c5a0e0
 
1878cfc
 
 
 
 
7c5a0e0
1878cfc
 
 
 
 
 
 
7c5a0e0
 
1878cfc
70694c9
 
7c5a0e0
1878cfc
 
7c5a0e0
 
1878cfc
 
 
 
 
 
 
 
 
7c5a0e0
2471374
7c5a0e0
 
 
 
 
 
 
 
 
 
2471374
7c5a0e0
 
 
2471374
7c5a0e0
 
5366108
 
7c5a0e0
2471374
7c5a0e0
 
 
90c1aa2
1878cfc
7c5a0e0
2471374
5366108
 
7c5a0e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878cfc
2471374
5366108
1878cfc
7c5a0e0
2471374
7c5a0e0
 
 
 
90c1aa2
7c5a0e0
1878cfc
2471374
7c5a0e0
 
1878cfc
 
 
 
 
 
7c5a0e0
1878cfc
7c5a0e0
1878cfc
 
 
 
 
 
 
 
 
70694c9
 
2471374
7c5a0e0
 
70694c9
7c5a0e0
5366108
 
70694c9
7c5a0e0
70694c9
 
5366108
1878cfc
2471374
1878cfc
 
2471374
 
1878cfc
 
 
 
 
 
 
2471374
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
import io
import base64
import os
from datetime import datetime, timedelta
import math
from pypinyin import lazy_pinyin, Style
from matplotlib.backends.backend_pdf import PdfPages

def get_font(size=14):
    """Loads a specific font file, falling back to a default if not found."""
    font_path = "simHei.ttc"
    if not os.path.exists(font_path):
        font_path = "SimHei.ttf" # Fallback font
    return font_manager.FontProperties(fname=font_path, size=size)

def get_pinyin_abbr(text):
    """Generates a two-letter pinyin abbreviation from the first two Chinese characters of a text."""
    if not text:
        return ""
    # Extract the first two Chinese characters
    chars = [c for c in text if '\u4e00' <= c <= '\u9fff']
    chars = chars[:2]
    # Get the first letter of the pinyin for each character
    pinyin_list = lazy_pinyin(chars, style=Style.FIRST_LETTER)
    return ''.join(pinyin_list).upper()

def process_schedule(file):
    """Processes the uploaded Excel file to extract and clean movie schedule data."""
    try:
        # Attempt to read the date from the Excel file
        date_df = pd.read_excel(file, header=None, skiprows=7, nrows=1, usecols=[3])
        date_str = pd.to_datetime(date_df.iloc[0, 0]).strftime('%Y-%m-%d')
        base_date = pd.to_datetime(date_str).date()
    except Exception:
        # Fallback to the current date if reading fails
        date_str = datetime.today().strftime('%Y-%m-%d')
        base_date = datetime.today().date()
    
    try:
        # Read the main schedule data
        df = pd.read_excel(file, header=9, usecols=[1, 2, 4, 5])
        df.columns = ['Hall', 'StartTime', 'EndTime', 'Movie']
        
        # Clean and process the data
        df['Hall'] = df['Hall'].ffill()
        df.dropna(subset=['StartTime', 'EndTime', 'Movie'], inplace=True)
        df['Hall'] = df['Hall'].astype(str).str.extract(r'(\d+号)')
        
        # Convert times to datetime objects
        df['StartTime_dt'] = pd.to_datetime(df['StartTime'], format='%H:%M', errors='coerce').apply(
            lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t
        )
        df['EndTime_dt'] = pd.to_datetime(df['EndTime'], format='%H:%M', errors='coerce').apply(
            lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t
        )
        
        # Handle overnight screenings
        df.loc[df['EndTime_dt'] < df['StartTime_dt'], 'EndTime_dt'] += timedelta(days=1)
        df = df.sort_values(['Hall', 'StartTime_dt'])
        
        # Merge consecutive screenings of the same movie
        merged_rows = []
        for _, group in df.groupby('Hall'):
            group = group.sort_values('StartTime_dt')
            current = None
            for _, row in group.iterrows():
                if current is None:
                    current = row.copy()
                elif row['Movie'] == current['Movie']:
                    current['EndTime_dt'] = row['EndTime_dt']
                else:
                    merged_rows.append(current)
                    current = row.copy()
            if current is not None:
                merged_rows.append(current)
        
        merged_df = pd.DataFrame(merged_rows)
        
        # Adjust start and end times
        merged_df['StartTime_dt'] = merged_df['StartTime_dt'] - timedelta(minutes=10)
        merged_df['EndTime_dt'] = merged_df['EndTime_dt'] - timedelta(minutes=5)
        
        merged_df['StartTime_str'] = merged_df['StartTime_dt'].dt.strftime('%H:%M')
        merged_df['EndTime_str'] = merged_df['EndTime_dt'].dt.strftime('%H:%M')
        
        return merged_df[['Hall', 'Movie', 'StartTime_str', 'EndTime_str']], date_str
    except Exception as e:
        st.error(f"Error processing file: {e}")
        return None, date_str

def create_print_layout(data, date_str):
    """Creates the PNG and PDF print layouts from the processed schedule data."""
    if data is None or data.empty:
        return None
    
    # --- Figure Setup for PNG and PDF ---
    png_fig = plt.figure(figsize=(8.27, 11.69), dpi=300)
    png_ax = png_fig.add_subplot(111)
    png_ax.set_axis_off()
    png_fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)
    
    pdf_fig = plt.figure(figsize=(8.27, 11.69), dpi=300)
    pdf_ax = pdf_fig.add_subplot(111)
    pdf_ax.set_axis_off()
    pdf_fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02)

    def process_figure(fig, ax):
        """Helper function to draw the schedule on a given matplotlib figure axis."""
        # --- Dynamic Height and Font Size Calculation ---
        halls = sorted(data['Hall'].unique(), key=lambda h: int(h.replace('号', '')))
        num_movies = len(data)
        num_separators = len(halls) - 1 if len(halls) > 1 else 0

        # Total vertical slots = movies + separators + 2 for padding
        total_slots = num_movies + num_separators + 2
        available_height = 0.96  # Usable page height (0.98 top - 0.02 bottom)
        line_height = available_height / total_slots
        
        # Convert figure line height to font points (72 points per inch)
        fig_height_inches = fig.get_figheight()
        font_size_pt = (fig_height_inches * line_height) * 72 * 0.90 # 90% of line height

        movie_font = get_font(font_size_pt)
        hall_font = get_font(font_size_pt) # Use the same size for impact
        date_font = get_font(12)

        ax.text(0.01, 0.99, date_str, fontsize=12, color='#A9A9A9',
                ha='left', va='top', fontproperties=date_font, transform=ax.transAxes)
        
        y_position = 0.98
        
        for i, hall in enumerate(halls):
            hall_data = data[data['Hall'] == hall]
            hall_num_text = f"${hall.replace('号', '')}^{{\\#}}$" # Format hall number with #
            
            movie_count = 1
            for _, row in hall_data.iterrows():
                # --- Content Layout and Alignment ---
                # Hall number is printed only for the first movie of the hall
                if movie_count == 1:
                    ax.text(0.03, y_position, hall_num_text,
                            fontsize=font_size_pt, fontweight='bold', ha='left', va='top',
                            fontproperties=hall_font, transform=ax.transAxes)

                pinyin_abbr = get_pinyin_abbr(row['Movie'])
                time_str = f"{row['StartTime_str']} - {row['EndTime_str']}"

                # Define x-coordinates for each column
                x_movie_name_end = 0.48
                x_seq_no_start = 0.51
                x_pinyin_start = 0.62
                x_time_start = 0.75
                
                # Movie Name (Right-aligned)
                ax.text(x_movie_name_end, y_position, row['Movie'],
                        fontsize=font_size_pt, ha='right', va='top',
                        fontproperties=movie_font, transform=ax.transAxes)
                
                # Sequence Number (Left-aligned)
                ax.text(x_seq_no_start, y_position, f"{movie_count}.",
                        fontsize=font_size_pt, ha='left', va='top',
                        fontproperties=movie_font, transform=ax.transAxes)
                
                # Pinyin Abbreviation (Left-aligned)
                ax.text(x_pinyin_start, y_position, pinyin_abbr,
                        fontsize=font_size_pt, ha='left', va='top',
                        fontproperties=movie_font, transform=ax.transAxes)

                # Time (Left-aligned)
                ax.text(x_time_start, y_position, time_str,
                        fontsize=font_size_pt, ha='left', va='top',
                        fontproperties=movie_font, transform=ax.transAxes)
                
                y_position -= line_height
                movie_count += 1
            
            # --- Hall Separator Line ---
            if i < num_separators:
                # Draw a black line to separate halls
                ax.axhline(y=y_position + (line_height / 2), xmin=0.02, xmax=0.98,
                           color='black', linewidth=0.8, transform=ax.transAxes)
                y_position -= line_height # Add space for the separator line

    # Generate both PNG and PDF outputs
    process_figure(png_fig, png_ax)
    process_figure(pdf_fig, pdf_ax)

    # Save PNG to a memory buffer
    png_buffer = io.BytesIO()
    png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.05)
    png_buffer.seek(0)
    image_base64 = base64.b64encode(png_buffer.getvalue()).decode()
    plt.close(png_fig)
    
    # Save PDF to a memory buffer
    pdf_buffer = io.BytesIO()
    with PdfPages(pdf_buffer) as pdf:
        pdf.savefig(pdf_fig, bbox_inches='tight', pad_inches=0.05)
    pdf_buffer.seek(0)
    pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
    plt.close(pdf_fig)
    
    return {
        'png': f"data:image/png;base64,{image_base64}",
        'pdf': f"data:application/pdf;base64,{pdf_base64}"
    }

def display_pdf(base64_pdf):
    """Embeds the PDF in the Streamlit app for display."""
    pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
    return pdf_display

# --- Streamlit App Main Interface ---
st.set_page_config(page_title="LED 屏幕时间表打印", layout="wide")
st.title("LED 屏幕时间表打印")

uploaded_file = st.file_uploader("选择打开【放映时间核对表.xls】文件", accept_multiple_files=False, type=["xls"])

if uploaded_file:
    with st.spinner("文件正在处理中,请稍候..."):
        schedule, date_str = process_schedule(uploaded_file)
        if schedule is not None:
            output = create_print_layout(schedule, date_str)
            
            # Create tabs for PDF and PNG previews
            tab1, tab2 = st.tabs(["PDF 预览", "PNG 预览"])
            
            with tab1:
                st.markdown(display_pdf(output['pdf']), unsafe_allow_html=True)
            
            with tab2:
                st.image(output['png'], use_container_width=True)
        else:
            st.error("无法处理文件,请检查文件格式或内容是否正确。")