File size: 11,500 Bytes
70694c9
 
 
 
 
 
 
 
2471374
7c5a0e0
70694c9
 
ee0147b
 
 
 
1878cfc
 
ee0147b
 
70694c9
 
ee0147b
 
 
1878cfc
 
2471374
1878cfc
1b1b918
ee0147b
1878cfc
 
70694c9
ee0147b
 
 
 
1878cfc
ee0147b
1878cfc
 
 
1b1b918
ee0147b
1878cfc
 
ee0147b
a215102
1878cfc
 
 
ee0147b
1878cfc
 
ee0147b
 
 
a215102
ee0147b
1878cfc
 
 
 
 
 
ee0147b
1878cfc
ee0147b
 
2471374
1878cfc
ee0147b
1878cfc
 
 
 
 
 
928edc3
093d429
928edc3
 
 
1878cfc
 
ee0147b
 
 
a215102
1878cfc
ee0147b
7c5a0e0
1878cfc
 
ee0147b
 
 
 
 
 
 
 
a215102
ee0147b
1b1b918
ee0147b
1878cfc
70694c9
ee0147b
 
 
 
1878cfc
 
1b1b918
ee0147b
 
 
928edc3
ee0147b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb1602
ee0147b
7c5a0e0
ee0147b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928edc3
ee0147b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b1b918
ee0147b
 
 
 
 
 
 
 
 
 
928edc3
ee0147b
1878cfc
 
 
 
 
 
ee0147b
1878cfc
ee0147b
1878cfc
 
 
 
 
 
 
 
70694c9
 
ee0147b
 
093d429
70694c9
ee0147b
 
 
70694c9
ee0147b
70694c9
 
093d429
ee0147b
 
 
 
 
 
 
 
 
 
 
 
 
a215102
ee0147b
1878cfc
ee0147b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
import io
import base64
import os
from datetime import datetime, timedelta
from pypinyin import lazy_pinyin, Style
from matplotlib.backends.backend_pdf import PdfPages

def get_font(size=14):
    """
    Retrieves the specified font properties. Looks for 'simHei.ttc' first,
    then falls back to 'SimHei.ttf'.
    """
    font_path = "simHei.ttc"
    if not os.path.exists(font_path):
        font_path = "SimHei.ttf"
    return font_manager.FontProperties(fname=font_path, size=size)

def get_pinyin_abbr(text):
    """
    Gets the first letter of the Pinyin for the first two Chinese characters of a text.
    """
    if not text:
        return ""
    # Extract the first two Chinese characters
    chars = [c for c in text if '\u4e00' <= c <= '\u9fff']
    chars = chars[:2]
    # Get the first letter of the Pinyin for each character
    pinyin_list = lazy_pinyin(chars, style=Style.FIRST_LETTER)
    return ''.join(pinyin_list).upper()

def process_schedule(file):
    """
    Processes the uploaded Excel file to extract and clean the movie schedule data.
    """
    try:
        # Try to read the date from the Excel file
        date_df = pd.read_excel(file, header=None, skiprows=7, nrows=1, usecols=[3])
        date_str = pd.to_datetime(date_df.iloc[0, 0]).strftime('%Y-%m-%d')
        base_date = pd.to_datetime(date_str).date()
    except Exception:
        # Fallback to today's date if reading fails
        date_str = datetime.today().strftime('%Y-%m-%d')
        base_date = datetime.today().date()
        file.seek(0) # Reset file pointer after failed read attempt

    try:
        df = pd.read_excel(file, header=9, usecols=[1, 2, 4, 5])
        df.columns = ['Hall', 'StartTime', 'EndTime', 'Movie']
        
        df['Hall'] = df['Hall'].ffill()
        df.dropna(subset=['StartTime', 'EndTime', 'Movie'], inplace=True)
        
        df['Hall_Num'] = df['Hall'].astype(str).str.extract(r'(\d+)').astype(int)
        df['Hall'] = df['Hall_Num'].astype(str) + '号'

        # Convert times to datetime objects
        df['StartTime_dt'] = pd.to_datetime(df['StartTime'], format='%H:%M', errors='coerce').apply(
            lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t
        )
        df['EndTime_dt'] = pd.to_datetime(df['EndTime'], format='%H:%M', errors='coerce').apply(
            lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t
        )
        
        df.loc[df['EndTime_dt'] < df['StartTime_dt'], 'EndTime_dt'] += timedelta(days=1)
        df = df.sort_values(['Hall_Num', 'StartTime_dt'])
        
        # Merge consecutive screenings of the same movie
        merged_rows = []
        for _, group in df.groupby('Hall_Num'):
            group = group.sort_values('StartTime_dt')
            current = None
            for _, row in group.iterrows():
                if current is None:
                    current = row.copy()
                else:
                    if row['Movie'] == current['Movie']:
                        current['EndTime_dt'] = row['EndTime_dt']
                    else:
                        merged_rows.append(current)
                        current = row.copy()
            if current is not None:
                merged_rows.append(current)
        
        if not merged_rows:
            return None, date_str

        merged_df = pd.DataFrame(merged_rows)
        
        # Adjust start and end times
        merged_df['StartTime_dt'] = merged_df['StartTime_dt'] - timedelta(minutes=10)
        merged_df['EndTime_dt'] = merged_df['EndTime_dt'] - timedelta(minutes=5)
        
        # Create final data columns for the table
        merged_df['Sequence'] = merged_df.groupby('Hall_Num').cumcount() + 1
        merged_df['Pinyin'] = merged_df['Movie'].apply(get_pinyin_abbr)
        merged_df['Time'] = merged_df['StartTime_dt'].dt.strftime('%H:%M') + ' - ' + merged_df['EndTime_dt'].dt.strftime('%H:%M')
        
        final_df = merged_df[['Hall', 'Hall_Num', 'Sequence', 'Movie', 'Pinyin', 'Time']].copy()
        final_df = final_df.sort_values(['Hall_Num', 'Sequence']).reset_index(drop=True)

        return final_df, date_str
    except Exception as e:
        st.error(f"An error occurred during data processing: {e}")
        return None, date_str

def create_print_layout(data, date_str):
    """
    Generates the print layout as PNG and PDF based on the processed data.
    """
    if data is None or data.empty:
        return None

    def draw_table_on_ax(fig, ax):
        """Helper function to draw the table on a given Matplotlib axis."""
        ax.set_axis_off()
        
        num_rows = len(data)
        if num_rows == 0:
            return

        # --- Layout & Sizing Calculations ---
        # Define printable area using relative coordinates (fractions of the page)
        TOP_MARGIN, BOTTOM_MARGIN = 0.96, 0.04
        LEFT_MARGIN, RIGHT_MARGIN = 0.04, 0.96
        TABLE_HEIGHT = TOP_MARGIN - BOTTOM_MARGIN
        TABLE_WIDTH = RIGHT_MARGIN - LEFT_MARGIN

        # Total rows for calculation: content rows + 2 for top/bottom buffer
        total_layout_rows = num_rows + 2
        row_height = TABLE_HEIGHT / total_layout_rows
        
        # Font size is 90% of the calculated row height
        # (row_height is a fraction of figure height, convert to points)
        font_size_pt = (row_height * fig.get_figheight() * 0.9) * 72
        font = get_font(size=font_size_pt)
        
        # Relative column widths
        col_relative_widths = {'hall': 1.2, 'seq': 0.8, 'movie': 5.0, 'pinyin': 1.5, 'time': 2.5}
        total_rel_width = sum(col_relative_widths.values())
        
        col_widths = {k: (v / total_rel_width) * TABLE_WIDTH for k, v in col_relative_widths.items()}
        
        # Calculate the absolute x-position for the left edge of each column
        x_pos = {}
        current_x = LEFT_MARGIN
        col_order = ['hall', 'seq', 'movie', 'pinyin', 'time']
        for col_name in col_order:
            x_pos[col_name] = current_x
            current_x += col_widths[col_name]
        x_pos['end'] = current_x  # The right edge of the last column

        # Add date header
        ax.text(LEFT_MARGIN, TOP_MARGIN, date_str, fontsize=12, color='#A9A9A9',
                ha='left', va='top', fontproperties=get_font(12), transform=ax.transAxes)

        # --- Drawing Loop ---
        for i, row in data.iterrows():
            # Calculate y-position for the center of the current row
            y_center = TOP_MARGIN - (i + 1.5) * row_height # +1.5 to account for header space
            y_top = y_center + row_height / 2
            y_bottom = y_center - row_height / 2

            # --- 1. Draw Cell Content ---
            # Column content is ordered as per requirement
            ax.text(x_pos['hall'] + col_widths['hall']/2, y_center, f"{row['Hall']}", va='center', ha='center', fontproperties=font, transform=ax.transAxes)
            ax.text(x_pos['seq'] + col_widths['seq']/2, y_center, f"{row['Sequence']}", va='center', ha='center', fontproperties=font, transform=ax.transAxes)
            ax.text(x_pos['movie'] + 0.01, y_center, f"{row['Movie']}", va='center', ha='left', fontproperties=font, transform=ax.transAxes, clip_on=True)
            ax.text(x_pos['pinyin'] + col_widths['pinyin']/2, y_center, f"{row['Pinyin']}", va='center', ha='center', fontproperties=font, transform=ax.transAxes)
            ax.text(x_pos['time'] + col_widths['time']/2, y_center, f"{row['Time']}", va='center', ha='center', fontproperties=font, transform=ax.transAxes)
            
            # --- 2. Draw Cell Borders ---
            # Draw all vertical cell lines with gray dots
            for col_name in col_order:
                ax.plot([x_pos[col_name], x_pos[col_name]], [y_bottom, y_top], color='gray', linestyle=':', linewidth=0.7)
            ax.plot([x_pos['end'], x_pos['end']], [y_bottom, y_top], color='gray', linestyle=':', linewidth=0.7)

            # Draw top border of the cell
            ax.plot([LEFT_MARGIN, x_pos['end']], [y_top, y_top], color='gray', linestyle=':', linewidth=0.7)
            
            # --- 3. Draw Hall Separator or Bottom Border ---
            # Check if this is the last movie for the current hall
            is_last_in_hall = (i == num_rows - 1) or (row['Hall_Num'] != data.iloc[i + 1]['Hall_Num'])
            
            if is_last_in_hall:
                # If it's the last entry for a hall, draw a solid black line below it
                ax.plot([LEFT_MARGIN, x_pos['end']], [y_bottom, y_bottom], color='black', linestyle='-', linewidth=1.2, zorder=3)
            else:
                # Otherwise, draw a standard gray dotted line
                ax.plot([LEFT_MARGIN, x_pos['end']], [y_bottom, y_bottom], color='gray', linestyle=':', linewidth=0.7)

    # --- Generate PNG and PDF Outputs ---
    # Create a figure for PNG output
    png_fig = plt.figure(figsize=(8.27, 11.69), dpi=300)
    png_ax = png_fig.add_subplot(111)
    draw_table_on_ax(png_fig, png_ax)
    
    # Create a separate figure for PDF output
    pdf_fig = plt.figure(figsize=(8.27, 11.69), dpi=300)
    pdf_ax = pdf_fig.add_subplot(111)
    draw_table_on_ax(pdf_fig, pdf_ax)
    
    # Save PNG to a buffer
    png_buffer = io.BytesIO()
    png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.05)
    png_buffer.seek(0)
    image_base64 = base64.b64encode(png_buffer.getvalue()).decode()
    plt.close(png_fig)
    
    # Save PDF to a buffer
    pdf_buffer = io.BytesIO()
    pdf_fig.savefig(pdf_buffer, format='pdf', bbox_inches='tight', pad_inches=0.05)
    pdf_buffer.seek(0)
    pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
    plt.close(pdf_fig)
    
    return {
        'png': f"data:image/png;base64,{image_base64}",
        'pdf': f"data:application/pdf;base64,{pdf_base64}"
    }

def display_pdf(base64_pdf):
    """Embeds the PDF in the Streamlit app for display."""
    pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
    return pdf_display

# --- Streamlit App UI ---
st.set_page_config(page_title="LED 屏幕时间表打印", layout="wide")
st.title("LED 屏幕时间表打印")

uploaded_file = st.file_uploader("选择打开【放映时间核对表.xls】文件", accept_multiple_files=False, type=["xls", "xlsx"])

if uploaded_file:
    with st.spinner("文件正在处理中,请稍候..."):
        schedule, date_str = process_schedule(io.BytesIO(uploaded_file.getvalue()))
        if schedule is not None and not schedule.empty:
            output = create_print_layout(schedule, date_str)
            
            if output:
                # Create tabs to switch between PDF and PNG previews
                tab1, tab2 = st.tabs(["PDF 预览", "PNG 预览"])
                
                with tab1:
                    st.markdown(display_pdf(output['pdf']), unsafe_allow_html=True)
                
                with tab2:
                    st.image(output['png'], use_container_width=True)
            else:
                 st.error("生成打印布局时出错。")
        else:
            st.error("无法处理文件,或文件中没有找到有效排片数据。请检查文件格式或内容是否正确。")