File size: 10,255 Bytes
e522499
 
7704499
e522499
 
 
 
 
 
95f254d
e522499
 
 
28f28d0
e522499
 
7704499
28f28d0
 
 
b7d31cf
28f28d0
7704499
95f254d
28f28d0
 
7704499
95f254d
28f28d0
7704499
95f254d
28f28d0
 
95f254d
28f28d0
e522499
34b21e7
 
95f254d
28f28d0
 
 
34b21e7
28f28d0
 
7704499
28f28d0
 
95f254d
28f28d0
95f254d
 
28f28d0
 
 
 
95f254d
28f28d0
e522499
95f254d
 
28f28d0
 
e522499
95f254d
e522499
 
 
 
 
 
 
95f254d
34b21e7
95f254d
e522499
28f28d0
e522499
 
28f28d0
 
 
 
95f254d
28f28d0
95f254d
7704499
28f28d0
 
 
34b21e7
28f28d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f254d
 
28f28d0
95f254d
 
 
 
 
 
 
 
 
7704499
28f28d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f254d
28f28d0
 
 
95f254d
28f28d0
 
 
95f254d
28f28d0
e522499
28f28d0
e522499
 
28f28d0
e522499
28f28d0
e522499
95f254d
28f28d0
e522499
 
28f28d0
e522499
 
 
 
 
 
 
28f28d0
 
 
 
e522499
 
28f28d0
7704499
 
e522499
28f28d0
e522499
 
28f28d0
34b21e7
28f28d0
 
 
 
7704499
 
 
 
28f28d0
7704499
28f28d0
7704499
 
 
 
95f254d
e522499
7704499
 
 
28f28d0
7704499
28f28d0
7704499
 
 
 
95f254d
e522499
95f254d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import math
from matplotlib.backends.backend_pdf import PdfPages

# --- Constants ---
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = 'grey' # Changed to grey for the new design
DATE_COLOR = '#A9A9A9'

def process_schedule(file):
    """
    Processes the uploaded Excel file to extract, clean, and sort screening times.
    """
    try:
        # Read Excel, skipping header rows
        df = pd.read_excel(file, skiprows=8)

        # Extract required columns (G, H, J)
        df = df.iloc[:, [6, 7, 9]]
        df.columns = ['Hall', 'StartTime', 'EndTime']

        # Clean data: drop rows with missing values
        df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])

        # Format Hall to "# " format
        df['Hall'] = df['Hall'].str.extract(r'(\d+)').astype(str) + ' '

        # Convert time columns to datetime objects
        base_date = datetime.today().date()
        df['StartTime'] = pd.to_datetime(df['StartTime'])
        df['EndTime'] = pd.to_datetime(df['EndTime'])

        # --- Handle overnight screenings ---
        # If a show ends after midnight (e.g., 1:30 AM), it belongs to the previous day's schedule.
        # We handle this by adding a day to its datetime object.
        for idx, row in df.iterrows():
            if row['EndTime'].hour < 9: # Assuming any end time before 9 AM is part of the previous night
                df.at[idx, 'EndTime'] = row['EndTime'] + timedelta(days=1)

        # Create a comparable time column that correctly handles the business day logic
        df['time_for_comparison'] = df['EndTime']

        # Sort screenings by their end time
        df = df.sort_values('EndTime')

        # Split data into day and night shifts
        split_datetime = datetime.combine(base_date, datetime.strptime(SPLIT_TIME, "%H:%M").time())
        part1 = df[df['time_for_comparison'] <= split_datetime].copy()
        part2 = df[df['time_for_comparison'] > split_datetime].copy()

        # Format the time display string (e.g., "5:30")
        for part in [part1, part2]:
            part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')

        # Precisely read the date from cell C6
        date_df = pd.read_excel(file, skiprows=5, nrows=1, usecols=[2], header=None)
        date_cell = date_df.iloc[0, 0]

        try:
            if isinstance(date_cell, str):
                date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
            else:
                date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
        except:
            date_str = datetime.today().strftime('%Y-%m-%d')

        return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str

    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
        return None, None, None

def _draw_grid_on_figure(fig, data, title, date_str):
    """
    Internal helper function to draw the new grid layout onto a Matplotlib figure.
    """
    plt.rcParams['font.family'] = 'sans-serif'
    plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # Font that supports Chinese characters

    total_items = len(data)
    if total_items == 0:
        return

    num_cols = 3
    num_rows = math.ceil(total_items / num_cols)

    A5_WIDTH_IN = 5.83
    A5_HEIGHT_IN = 8.27

    # 1. Redesign layout based on precise grid calculations
    margin_y = (A5_HEIGHT_IN / num_rows) / 4
    margin_x = margin_y # Use symmetric margins for a cleaner look

    # Prevent margins from becoming too large on pages with few items
    if A5_WIDTH_IN < 2 * margin_x or A5_HEIGHT_IN < 2 * margin_y:
        margin_x = A5_WIDTH_IN / 10
        margin_y = A5_HEIGHT_IN / 10

    printable_width = A5_WIDTH_IN - 2 * margin_x
    printable_height = A5_HEIGHT_IN - 2 * margin_y
    cell_width = printable_width / num_cols
    cell_height = printable_height / num_rows

    # Prepare data: Sort into column-first (Z-style) order for layout
    data_values = data.values.tolist()
    while len(data_values) % num_cols != 0:
        data_values.append(['', '']) # Pad data for a full grid
    rows_per_col_layout = math.ceil(len(data_values) / num_cols)
    sorted_data = [['', '']] * len(data_values)
    for i, item in enumerate(data_values):
        if item[0] and item[1]:
            row_in_col = i % rows_per_col_layout
            col_idx = i // rows_per_col_layout
            new_index = row_in_col * num_cols + col_idx
            if new_index < len(sorted_data):
                sorted_data[new_index] = item

    # --- Draw each cell onto the figure ---
    item_counter = 0
    for idx, (hall, end_time) in enumerate(sorted_data):
        if not (hall and end_time):
            continue

        item_counter += 1
        row_grid = idx // num_cols
        col_grid = idx % num_cols

        # Calculate position for each cell's axes in Figure coordinates [left, bottom, width, height]
        ax_left_in = margin_x + col_grid * cell_width
        ax_bottom_in = margin_y + (num_rows - 1 - row_grid) * cell_height # Y-axis from bottom
        ax_pos = [
            ax_left_in / A5_WIDTH_IN,
            ax_bottom_in / A5_HEIGHT_IN,
            cell_width / A5_WIDTH_IN,
            cell_height / A5_HEIGHT_IN,
        ]
        ax = fig.add_axes(ax_pos)

        # 2. Change Cell Border to a gray, dotted line
        for spine in ax.spines.values():
            spine.set_visible(True)
            spine.set_linestyle(':') # Dotted line style
            spine.set_edgecolor(BORDER_COLOR)
            spine.set_linewidth(1)

        # 4. Add Cell Index Number
        ax.text(0.07, 0.93, str(item_counter),
                transform=ax.transAxes,
                fontsize=9,
                color='grey',
                ha='left',
                va='top')

        # 3. Adjust Cell Content
        display_text = f"{hall}{end_time}"

        # Dynamically estimate font size to fill 90% of the cell width
        # This is a heuristic that provides a good balance of size and spacing.
        font_scale_factor = 1.7
        estimated_fontsize = (cell_width * 72 / len(display_text)) * font_scale_factor * 0.9
        max_fontsize = cell_height * 72 * 0.6 # Cap font size to 60% of cell height
        final_fontsize = min(estimated_fontsize, max_fontsize)

        ax.text(0.5, 0.5, display_text,
                fontsize=final_fontsize,
                fontweight='bold',
                ha='center',
                va='center',
                transform=ax.transAxes)

        ax.set_xticks([])
        ax.set_yticks([])

    # Add date and title to the top margin of the figure
    title_fontsize = margin_y * 72 * 0.3 # Scale title font size with margin
    fig.text(margin_x / A5_WIDTH_IN, 1 - (margin_y * 0.5 / A5_HEIGHT_IN),
             f"{date_str} {title}",
             fontsize=title_fontsize,
             color=DATE_COLOR,
             fontweight='bold',
             ha='left',
             va='center')


def create_print_layout(data, title, date_str):
    """
    Creates the final print-ready output in both PNG and PDF formats using the new grid layout.
    """
    if data.empty:
        return None

    # --- Create separate figures for PNG and PDF to ensure no cross-contamination ---
    png_fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
    pdf_fig = plt.figure(figsize=(5.83, 8.27), dpi=300)

    # --- Draw the layout on both figures ---
    _draw_grid_on_figure(png_fig, data, title, date_str)
    _draw_grid_on_figure(pdf_fig, data, title, date_str)

    # --- Save PNG to a memory buffer ---
    png_buffer = io.BytesIO()
    png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.02)
    png_buffer.seek(0)
    png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
    plt.close(png_fig)

    # --- Save PDF to a memory buffer ---
    pdf_buffer = io.BytesIO()
    with PdfPages(pdf_buffer) as pdf:
        pdf.savefig(pdf_fig, bbox_inches='tight', pad_inches=0.02)
    pdf_buffer.seek(0)
    pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
    plt.close(pdf_fig)

    return {
        'png': f'data:image/png;base64,{png_base64}',
        'pdf': f'data:application/pdf;base64,{pdf_base64}'
    }

def display_pdf(base64_pdf):
    """
    Generates the HTML to embed and display a PDF in Streamlit.
    """
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
    return pdf_display

# --- Streamlit User Interface ---
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")

uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])

if uploaded_file:
    part1_data, part2_data, date_string = process_schedule(uploaded_file)

    if part1_data is not None and part2_data is not None:
        # Generate layouts for both day and night shifts
        part1_output = create_print_layout(part1_data, "A", date_string)
        part2_output = create_print_layout(part2_data, "C", date_string)

        col1, col2 = st.columns(2)

        with col1:
            st.subheader("白班散场预览 (时间 ≤ 17:30)")
            if part1_output:
                # Use tabs for PDF and PNG previews
                tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
                with tab1_1:
                    st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
                with tab1_2:
                    st.image(part1_output['png'])
            else:
                st.info("白班部分没有数据")

        with col2:
            st.subheader("夜班散场预览 (时间 > 17:30)")
            if part2_output:
                # Use tabs for PDF and PNG previews
                tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
                with tab2_1:
                    st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
                with tab2_2:
                    st.image(part2_output['png'])
            else:
                st.info("夜班部分没有数据")