Spaces:
Running
Running
File size: 10,255 Bytes
e522499 7704499 e522499 95f254d e522499 28f28d0 e522499 7704499 28f28d0 b7d31cf 28f28d0 7704499 95f254d 28f28d0 7704499 95f254d 28f28d0 7704499 95f254d 28f28d0 95f254d 28f28d0 e522499 34b21e7 95f254d 28f28d0 34b21e7 28f28d0 7704499 28f28d0 95f254d 28f28d0 95f254d 28f28d0 95f254d 28f28d0 e522499 95f254d 28f28d0 e522499 95f254d e522499 95f254d 34b21e7 95f254d e522499 28f28d0 e522499 28f28d0 95f254d 28f28d0 95f254d 7704499 28f28d0 34b21e7 28f28d0 95f254d 28f28d0 95f254d 7704499 28f28d0 95f254d 28f28d0 95f254d 28f28d0 95f254d 28f28d0 e522499 28f28d0 e522499 28f28d0 e522499 28f28d0 e522499 95f254d 28f28d0 e522499 28f28d0 e522499 28f28d0 e522499 28f28d0 7704499 e522499 28f28d0 e522499 28f28d0 34b21e7 28f28d0 7704499 28f28d0 7704499 28f28d0 7704499 95f254d e522499 7704499 28f28d0 7704499 28f28d0 7704499 95f254d e522499 95f254d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import math
from matplotlib.backends.backend_pdf import PdfPages
# --- Constants ---
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = 'grey' # Changed to grey for the new design
DATE_COLOR = '#A9A9A9'
def process_schedule(file):
"""
Processes the uploaded Excel file to extract, clean, and sort screening times.
"""
try:
# Read Excel, skipping header rows
df = pd.read_excel(file, skiprows=8)
# Extract required columns (G, H, J)
df = df.iloc[:, [6, 7, 9]]
df.columns = ['Hall', 'StartTime', 'EndTime']
# Clean data: drop rows with missing values
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
# Format Hall to "# " format
df['Hall'] = df['Hall'].str.extract(r'(\d+)').astype(str) + ' '
# Convert time columns to datetime objects
base_date = datetime.today().date()
df['StartTime'] = pd.to_datetime(df['StartTime'])
df['EndTime'] = pd.to_datetime(df['EndTime'])
# --- Handle overnight screenings ---
# If a show ends after midnight (e.g., 1:30 AM), it belongs to the previous day's schedule.
# We handle this by adding a day to its datetime object.
for idx, row in df.iterrows():
if row['EndTime'].hour < 9: # Assuming any end time before 9 AM is part of the previous night
df.at[idx, 'EndTime'] = row['EndTime'] + timedelta(days=1)
# Create a comparable time column that correctly handles the business day logic
df['time_for_comparison'] = df['EndTime']
# Sort screenings by their end time
df = df.sort_values('EndTime')
# Split data into day and night shifts
split_datetime = datetime.combine(base_date, datetime.strptime(SPLIT_TIME, "%H:%M").time())
part1 = df[df['time_for_comparison'] <= split_datetime].copy()
part2 = df[df['time_for_comparison'] > split_datetime].copy()
# Format the time display string (e.g., "5:30")
for part in [part1, part2]:
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
# Precisely read the date from cell C6
date_df = pd.read_excel(file, skiprows=5, nrows=1, usecols=[2], header=None)
date_cell = date_df.iloc[0, 0]
try:
if isinstance(date_cell, str):
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
else:
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
except:
date_str = datetime.today().strftime('%Y-%m-%d')
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None, None, None
def _draw_grid_on_figure(fig, data, title, date_str):
"""
Internal helper function to draw the new grid layout onto a Matplotlib figure.
"""
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # Font that supports Chinese characters
total_items = len(data)
if total_items == 0:
return
num_cols = 3
num_rows = math.ceil(total_items / num_cols)
A5_WIDTH_IN = 5.83
A5_HEIGHT_IN = 8.27
# 1. Redesign layout based on precise grid calculations
margin_y = (A5_HEIGHT_IN / num_rows) / 4
margin_x = margin_y # Use symmetric margins for a cleaner look
# Prevent margins from becoming too large on pages with few items
if A5_WIDTH_IN < 2 * margin_x or A5_HEIGHT_IN < 2 * margin_y:
margin_x = A5_WIDTH_IN / 10
margin_y = A5_HEIGHT_IN / 10
printable_width = A5_WIDTH_IN - 2 * margin_x
printable_height = A5_HEIGHT_IN - 2 * margin_y
cell_width = printable_width / num_cols
cell_height = printable_height / num_rows
# Prepare data: Sort into column-first (Z-style) order for layout
data_values = data.values.tolist()
while len(data_values) % num_cols != 0:
data_values.append(['', '']) # Pad data for a full grid
rows_per_col_layout = math.ceil(len(data_values) / num_cols)
sorted_data = [['', '']] * len(data_values)
for i, item in enumerate(data_values):
if item[0] and item[1]:
row_in_col = i % rows_per_col_layout
col_idx = i // rows_per_col_layout
new_index = row_in_col * num_cols + col_idx
if new_index < len(sorted_data):
sorted_data[new_index] = item
# --- Draw each cell onto the figure ---
item_counter = 0
for idx, (hall, end_time) in enumerate(sorted_data):
if not (hall and end_time):
continue
item_counter += 1
row_grid = idx // num_cols
col_grid = idx % num_cols
# Calculate position for each cell's axes in Figure coordinates [left, bottom, width, height]
ax_left_in = margin_x + col_grid * cell_width
ax_bottom_in = margin_y + (num_rows - 1 - row_grid) * cell_height # Y-axis from bottom
ax_pos = [
ax_left_in / A5_WIDTH_IN,
ax_bottom_in / A5_HEIGHT_IN,
cell_width / A5_WIDTH_IN,
cell_height / A5_HEIGHT_IN,
]
ax = fig.add_axes(ax_pos)
# 2. Change Cell Border to a gray, dotted line
for spine in ax.spines.values():
spine.set_visible(True)
spine.set_linestyle(':') # Dotted line style
spine.set_edgecolor(BORDER_COLOR)
spine.set_linewidth(1)
# 4. Add Cell Index Number
ax.text(0.07, 0.93, str(item_counter),
transform=ax.transAxes,
fontsize=9,
color='grey',
ha='left',
va='top')
# 3. Adjust Cell Content
display_text = f"{hall}{end_time}"
# Dynamically estimate font size to fill 90% of the cell width
# This is a heuristic that provides a good balance of size and spacing.
font_scale_factor = 1.7
estimated_fontsize = (cell_width * 72 / len(display_text)) * font_scale_factor * 0.9
max_fontsize = cell_height * 72 * 0.6 # Cap font size to 60% of cell height
final_fontsize = min(estimated_fontsize, max_fontsize)
ax.text(0.5, 0.5, display_text,
fontsize=final_fontsize,
fontweight='bold',
ha='center',
va='center',
transform=ax.transAxes)
ax.set_xticks([])
ax.set_yticks([])
# Add date and title to the top margin of the figure
title_fontsize = margin_y * 72 * 0.3 # Scale title font size with margin
fig.text(margin_x / A5_WIDTH_IN, 1 - (margin_y * 0.5 / A5_HEIGHT_IN),
f"{date_str} {title}",
fontsize=title_fontsize,
color=DATE_COLOR,
fontweight='bold',
ha='left',
va='center')
def create_print_layout(data, title, date_str):
"""
Creates the final print-ready output in both PNG and PDF formats using the new grid layout.
"""
if data.empty:
return None
# --- Create separate figures for PNG and PDF to ensure no cross-contamination ---
png_fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
pdf_fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
# --- Draw the layout on both figures ---
_draw_grid_on_figure(png_fig, data, title, date_str)
_draw_grid_on_figure(pdf_fig, data, title, date_str)
# --- Save PNG to a memory buffer ---
png_buffer = io.BytesIO()
png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.02)
png_buffer.seek(0)
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
plt.close(png_fig)
# --- Save PDF to a memory buffer ---
pdf_buffer = io.BytesIO()
with PdfPages(pdf_buffer) as pdf:
pdf.savefig(pdf_fig, bbox_inches='tight', pad_inches=0.02)
pdf_buffer.seek(0)
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
plt.close(pdf_fig)
return {
'png': f'data:image/png;base64,{png_base64}',
'pdf': f'data:application/pdf;base64,{pdf_base64}'
}
def display_pdf(base64_pdf):
"""
Generates the HTML to embed and display a PDF in Streamlit.
"""
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
return pdf_display
# --- Streamlit User Interface ---
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])
if uploaded_file:
part1_data, part2_data, date_string = process_schedule(uploaded_file)
if part1_data is not None and part2_data is not None:
# Generate layouts for both day and night shifts
part1_output = create_print_layout(part1_data, "A", date_string)
part2_output = create_print_layout(part2_data, "C", date_string)
col1, col2 = st.columns(2)
with col1:
st.subheader("白班散场预览 (时间 ≤ 17:30)")
if part1_output:
# Use tabs for PDF and PNG previews
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab1_1:
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
with tab1_2:
st.image(part1_output['png'])
else:
st.info("白班部分没有数据")
with col2:
st.subheader("夜班散场预览 (时间 > 17:30)")
if part2_output:
# Use tabs for PDF and PNG previews
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab2_1:
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
with tab2_2:
st.image(part2_output['png'])
else:
st.info("夜班部分没有数据") |