File size: 10,706 Bytes
e522499
 
7704499
e522499
 
 
79debab
 
e522499
 
79debab
e522499
 
 
79debab
e522499
79debab
 
 
 
 
 
 
 
 
 
 
 
 
 
e522499
7704499
79debab
b7d31cf
79debab
7704499
95f254d
79debab
 
7704499
95f254d
79debab
7704499
79debab
95f254d
79debab
 
95f254d
79debab
e522499
79debab
 
95f254d
79debab
7704499
79debab
 
 
 
 
 
95f254d
79debab
 
95f254d
79debab
 
95f254d
79debab
 
 
 
 
95f254d
79debab
 
 
 
 
 
 
 
 
 
 
 
e522499
95f254d
e522499
79debab
e522499
 
 
 
 
 
95f254d
79debab
95f254d
e522499
79debab
e522499
 
28f28d0
 
79debab
28f28d0
 
95f254d
79debab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e522499
79debab
e522499
 
79debab
 
e522499
79debab
e522499
 
79debab
 
e522499
 
 
 
 
 
 
79debab
28f28d0
e522499
 
79debab
7704499
 
e522499
28f28d0
e522499
 
79debab
 
34b21e7
28f28d0
79debab
 
 
7704499
 
 
 
79debab
7704499
 
 
 
 
95f254d
e522499
7704499
 
 
79debab
7704499
 
 
 
 
95f254d
e522499
95f254d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import matplotlib.font_manager as fm
import math

# --- CONSTANTS ---
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = '#A9A9A9'
DATE_COLOR = '#A9A9A9'
A5_WIDTH_IN = 5.83
A5_HEIGHT_IN = 8.27
DPI = 300
NUM_COLS = 3

# --- FONT SETUP ---
# Attempt to load the specified font, with a safe fallback.
try:
    # IMPORTANT: Place 'SimHei.ttf' in the same directory as the script.
    FONT_PROP = fm.FontProperties(fname='SimHei.ttf')
except FileNotFoundError:
    st.warning("SimHei.ttf not found. Using a default sans-serif font. Chinese characters may not display correctly.")
    FONT_PROP = fm.FontProperties(family='sans-serif')


def process_schedule(file):
    """处理上传的 Excel 文件,生成排序和分组后的打印内容"""
    try:
        # 读取 Excel,跳过前 8 行
        df = pd.read_excel(file, skiprows=8)

        # 提取所需列 (G9, H9, J9)
        df = df.iloc[:, [6, 7, 9]]  # G, H, J 列
        df.columns = ['Hall', 'StartTime', 'EndTime']

        # 清理数据
        df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
        df = df[df['Hall'].astype(str).str.contains(r'\d', na=False)] # Ensure Hall has a digit

        # 转换影厅格式为 "#号" 格式
        df['Hall'] = df['Hall'].astype(str).str.extract(r'(\d+)').astype(str) + ' '

        # 转换时间为 datetime 对象
        base_date = datetime.today().date()
        df['StartTime'] = pd.to_datetime(df['StartTime'], errors='coerce').dt.time
        df['EndTime'] = pd.to_datetime(df['EndTime'], errors='coerce').dt.time

        df = df.dropna(subset=['StartTime', 'EndTime'])

        def combine_date_time(t):
            dt = datetime.combine(base_date, t)
            # Handle overnight shows (times past midnight like 1:30 AM are for the next day)
            if t.hour < int(BUSINESS_START.split(':')[0]) - 1:
                return dt + timedelta(days=1)
            return dt

        df['StartDateTime'] = df['StartTime'].apply(combine_date_time)
        df['EndDateTime'] = df['EndTime'].apply(combine_date_time)

        # 按散场时间排序
        df = df.sort_values('EndDateTime')

        # 分割数据
        split_dt = datetime.combine(base_date, datetime.strptime(SPLIT_TIME, "%H:%M").time())
        
        part1 = df[df['EndDateTime'] <= split_dt].copy()
        part2 = df[df['EndDateTime'] > split_dt].copy()

        # 格式化时间显示
        for part in [part1, part2]:
            part['EndTimeStr'] = part['EndDateTime'].dt.strftime('%-I:%M')

        # 关键修改:精确读取C6单元格
        date_df = pd.read_excel(
            file,
            skiprows=5,  # 跳过前5行(0-4)
            nrows=1,     # 只读1行
            usecols=[2], # 第三列(C列)
            header=None  # 无表头
        )
        date_cell = date_df.iloc[0, 0]

        try:
            # 处理不同日期格式
            if isinstance(date_cell, str):
                date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
            else:
                date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
        except:
            date_str = datetime.today().strftime('%Y-%m-%d')

        return part1[['Hall', 'EndTimeStr']], part2[['Hall', 'EndTimeStr']], date_str

    except Exception as e:
        st.error(f"处理文件时出错: {str(e)}")
        return None, None, None


def create_print_layout(data, title, date_str):
    """创建符合新要求的打印布局 (PNG 和 PDF)"""
    if data.empty:
        return None

    # --- 1. 动态字体大小计算 ---
    # 目标:让最长的文本占单元格宽度的90%
    longest_text = ""
    if not data.empty:
        data['combined_text'] = data['Hall'] + data['EndTimeStr']
        if not data['combined_text'].empty:
            longest_text = data.loc[data['combined_text'].str.len().idxmax(), 'combined_text']

    # 估算单元格宽度 (A5纸张,减去边距和间距)
    fig_width_in = A5_WIDTH_IN
    margin_frac = 0.04  # 4% margin on each side
    wspace_frac = 0.05  # 5% space between columns
    
    # 可用绘图宽度
    drawable_width_in = fig_width_in * (1 - 2 * margin_frac)
    # 宽度被3个子图和2个间隙瓜分
    # 3*cell_w + 2*(cell_w*wspace) = drawable_width
    cell_width_in = drawable_width_in / (NUM_COLS + (NUM_COLS - 1) * wspace_frac)
    
    main_fontsize = 30  # Default start size
    if longest_text:
        # 估算文本宽度 (这是一个经验法则,0.7是中英混合字体的估算因子)
        # 文本宽度(点) ≈ 字符数 * 字体大小(点) * 因子
        estimated_text_width_pt = len(longest_text) * main_fontsize * 0.7
        target_width_pt = (cell_width_in * 0.9) * 72  # 目标宽度 (英寸*0.9 -> 点)
        
        if estimated_text_width_pt > 0:
            ratio = target_width_pt / estimated_text_width_pt
            main_fontsize *= ratio
    
    main_fontsize = max(10, min(main_fontsize, 50))  # 限制字体大小在合理范围
    index_fontsize = main_fontsize * 0.45 # 序号字体大小

    # --- 2. 准备绘图 ---
    def generate_figure():
        fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=DPI)
        fig.subplots_adjust(left=margin_frac, right=1-margin_frac, top=0.95, bottom=margin_frac, hspace=0.2, wspace=wspace_frac)

        total_items = len(data)
        num_rows = math.ceil(total_items / NUM_COLS)

        # 创建网格
        gs = gridspec.GridSpec(num_rows + 1, NUM_COLS, height_ratios=[0.2] + [1] * num_rows, figure=fig)

        # 绘制日期标题
        ax_date = fig.add_subplot(gs[0, :])
        ax_date.text(0, 0.5, f"{date_str} {title}", fontproperties=FONT_PROP,
                     fontsize=main_fontsize * 0.5, color=DATE_COLOR, fontweight='bold',
                     ha='left', va='center', transform=ax_date.transAxes)
        ax_date.set_axis_off()

        # 准备Z字形排列的数据
        data_values = data[['Hall', 'EndTimeStr']].values.tolist()
        while len(data_values) % NUM_COLS != 0:
            data_values.append(['', ''])
        
        rows_per_col_layout = math.ceil(len(data_values) / NUM_COLS)
        sorted_data = [['', '']] * len(data_values)
        for i, item in enumerate(data_values):
            if item[0] and item[1]:
                row_in_col = i % rows_per_col_layout
                col_idx = i // rows_per_col_layout
                new_index = row_in_col * NUM_COLS + col_idx
                if new_index < len(sorted_data):
                    sorted_data[new_index] = item
        
        item_counter = 0
        for idx, (hall, end_time) in enumerate(sorted_data):
            if hall and end_time:
                item_counter += 1
                row_grid = idx // NUM_COLS + 1
                col_grid = idx % NUM_COLS

                if row_grid < num_rows + 1:
                    ax = fig.add_subplot(gs[row_grid, col_grid])
                    
                    # --- 3. 绘制单元格 ---
                    # a. 设置点状虚线边框
                    for spine in ax.spines.values():
                        spine.set_linestyle((0, (1, 2)))  # (offset, (on, off)) tuple for dotted
                        spine.set_edgecolor(BORDER_COLOR)
                        spine.set_linewidth(1)

                    # b. 居中绘制主要文本
                    display_text = f"{hall}{end_time}"
                    ax.text(0.5, 0.5, display_text, fontproperties=FONT_PROP,
                            fontsize=main_fontsize, fontweight='bold',
                            ha='center', va='center', transform=ax.transAxes)
                    
                    # c. 在左上角添加序号
                    ax.text(0.05, 0.95, str(item_counter), fontproperties=FONT_PROP,
                            fontsize=index_fontsize, color='grey',
                            ha='left', va='top', transform=ax.transAxes)

                    ax.set_xticks([])
                    ax.set_yticks([])
        return fig

    # --- 4. 保存为 PNG 和 PDF ---
    fig_for_output = generate_figure()

    # 保存 PNG
    png_buffer = io.BytesIO()
    fig_for_output.savefig(png_buffer, format='png', dpi=DPI)
    png_buffer.seek(0)
    png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
    
    # 保存 PDF
    pdf_buffer = io.BytesIO()
    fig_for_output.savefig(pdf_buffer, format='pdf', dpi=DPI)
    pdf_buffer.seek(0)
    pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()

    plt.close(fig_for_output)

    return {
        'png': f'data:image/png;base64,{png_base64}',
        'pdf': f'data:application/pdf;base64,{pdf_base64}'
    }

def display_pdf(base64_pdf):
    """在Streamlit中嵌入显示PDF"""
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
    return pdf_display

# --- Streamlit UI ---
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")

uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])

if uploaded_file:
    # Rename columns in process_schedule call to match new names
    part1_data, part2_data, date_str = process_schedule(uploaded_file)

    if part1_data is not None and part2_data is not None:
        # Pass the dataframes with renamed 'EndTimeStr' column
        part1_output = create_print_layout(part1_data, "A", date_str)
        part2_output = create_print_layout(part2_data, "C", date_str)

        col1, col2 = st.columns(2)

        with col1:
            st.subheader("白班散场预览(结束时间 ≤ 17:30)")
            if part1_output:
                tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
                with tab1_1:
                    st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
                with tab1_2:
                    st.image(part1_output['png'])
            else:
                st.info("白班部分没有数据")

        with col2:
            st.subheader("夜班散场预览(结束时间 > 17:30)")
            if part2_output:
                tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
                with tab2_1:
                    st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
                with tab2_2:
                    st.image(part2_output['png'])
            else:
                st.info("夜班部分没有数据")