File size: 11,539 Bytes
e522499
 
7704499
e522499
 
 
79debab
e522499
cd91a84
8319975
e522499
 
 
 
8319975
e522499
 
7704499
79debab
b7d31cf
79debab
7704499
8319975
79debab
 
7704499
8319975
79debab
7704499
8319975
 
 
 
cd91a84
 
8319975
79debab
e522499
cd91a84
 
8319975
cd91a84
 
 
8319975
cd91a84
 
 
8319975
cd91a84
 
 
 
 
8319975
cd91a84
 
8319975
cd91a84
 
 
 
8319975
cd91a84
8319975
cd91a84
 
 
 
8319975
cd91a84
8319975
79debab
cd91a84
8319975
79debab
8319975
 
 
 
 
 
79debab
 
8319975
 
 
 
 
 
79debab
 
 
cd91a84
 
 
 
79debab
e522499
8319975
e522499
79debab
e522499
 
 
 
 
 
8319975
cd91a84
8319975
e522499
79debab
e522499
 
8319975
28f28d0
8319975
28f28d0
 
95f254d
8319975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79debab
8319975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd91a84
8319975
cd91a84
 
8319975
 
 
 
 
 
 
 
 
 
 
 
 
 
e522499
8319975
 
e522499
 
8319975
 
 
e522499
8319975
 
 
e522499
 
8319975
e522499
 
 
 
 
 
8319975
e522499
8319975
cd91a84
e522499
 
8319975
7704499
 
e522499
cd91a84
e522499
 
cd91a84
34b21e7
cd91a84
8319975
cd91a84
 
7704499
 
 
 
cd91a84
7704499
8319975
7704499
 
 
 
95f254d
e522499
7704499
 
 
cd91a84
7704499
8319975
7704499
 
 
 
95f254d
e522499
95f254d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import math
from matplotlib.backends.backend_pdf import PdfPages
# The 'FancyBboxPatch' is no longer needed for the new border style.

SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = 'gray' # Changed to gray for the new style
DATE_COLOR = '#A9A9A9'

def process_schedule(file):
    """处理上传的 Excel 文件,生成排序和分组后的打印内容"""
    try:
        # 读取 Excel,跳过前 8 行
        df = pd.read_excel(file, skiprows=8)

        # 提取所需列 (G9, H9, J9)
        df = df.iloc[:, [6, 7, 9]]  # G, H, J 列
        df.columns = ['Hall', 'StartTime', 'EndTime']

        # 清理数据
        df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])

        # 转换影厅格式为 "#" 格式 (移除末尾空格)
        df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str)

        # 保存原始时间字符串用于诊断
        df['original_end'] = df['EndTime']

        # 转换时间为 datetime 对象
        base_date = datetime.today().date()
        df['StartTime'] = pd.to_datetime(df['StartTime'])
        df['EndTime'] = pd.to_datetime(df['EndTime'])

        # 设置基准时间
        business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
        business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")

        # 处理跨天情况
        if business_end < business_start:
            business_end += timedelta(days=1)

        # 标准化所有时间到同一天
        for idx, row in df.iterrows():
            end_time = row['EndTime']
            if end_time.hour < 9:
                df.at[idx, 'EndTime'] = end_time + timedelta(days=1)

            if row['StartTime'].hour >= 21 and end_time.hour < 9:
                df.at[idx, 'EndTime'] = end_time + timedelta(days=1)

        # 筛选营业时间内的场次
        df['time_for_comparison'] = df['EndTime'].apply(
            lambda x: datetime.combine(base_date, x.time())
        )

        df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)

        valid_times = (
            ((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
             (df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
        )

        df = df[valid_times]

        # 按散场时间排序
        df = df.sort_values('EndTime')

        # 分割数据
        split_time_obj = datetime.strptime(SPLIT_TIME, "%H:%M").time()
        split_datetime = datetime.combine(base_date, split_time_obj)

        part1 = df[df['time_for_comparison'] <= split_datetime].copy()
        part2 = df[df['time_for_comparison'] > split_datetime].copy()

        # 格式化时间显示
        for part in [part1, part2]:
            # Use '%-H' for 24-hour format without leading zero on Linux/macOS
            # Use '%#H' on Windows. A more cross-platform way is to format and remove later.
            # Let's stick to '%H:%M' for universal 24-hour format e.g., "09:30"
            part['EndTime'] = part['EndTime'].dt.strftime('%H:%M')


        # 关键修改:精确读取C6单元格
        date_df = pd.read_excel(
            file,
            skiprows=5,    # 跳过前5行(0-4)
            nrows=1,       # 只读1行
            usecols=[2],   # 第三列(C列)
            header=None    # 无表头
        )
        date_cell = date_df.iloc[0, 0]

        try:
            # 处理不同日期格式
            if isinstance(date_cell, str):
                date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
            else:
                date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
        except:
            date_str = datetime.today().strftime('%Y-%m-%d')

        return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str

    except Exception as e:
        st.error(f"处理文件时出错: {str(e)}")
        return None, None, None


def create_print_layout(data, title, date_str):
    """创建打印布局 (PNG 和 PDF)"""
    if data.empty:
        return None

    # --- A5 Paper Dimensions in inches for precise layout ---
    A5_WIDTH_IN = 5.83
    A5_HEIGHT_IN = 8.27
    NUM_COLS = 3

    # --- Create Figures for PNG and PDF ---
    png_fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300)
    pdf_fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300)

    # --- Internal drawing function to apply changes to both figures ---
    def process_figure(fig):
        plt.rcParams['font.family'] = 'sans-serif'
        plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']

        total_items = len(data)
        if total_items == 0:
            plt.close(fig)
            return

        # --- 1. Redesign Print Layout ---
        # Calculate number of rows needed
        num_rows = math.ceil(total_items / NUM_COLS)
        
        # Remove all padding from the figure edges
        fig.subplots_adjust(left=0, right=1, top=0.95, bottom=0)

        # Create a grid with no space between cells. A small top row for the date.
        gs = gridspec.GridSpec(
            num_rows + 1,
            NUM_COLS,
            hspace=0,
            wspace=0,
            height_ratios=[0.3] + [1] * num_rows, # Make date row shorter
            figure=fig
        )

        data_values = data.values.tolist()

        # Pad data with empty values to make it a multiple of NUM_COLS
        while len(data_values) % NUM_COLS != 0:
            data_values.append(['', ''])

        # --- Sort data column-first (Z-pattern) ---
        rows_per_col_layout = math.ceil(len(data_values) / NUM_COLS)
        sorted_data = [['', '']] * len(data_values)
        for i, item in enumerate(data_values):
            if item[0] and item[1]:
                row_in_col = i % rows_per_col_layout
                col_idx = i // rows_per_col_layout
                new_index = row_in_col * NUM_COLS + col_idx
                if new_index < len(sorted_data):
                    sorted_data[new_index] = item

        # --- Dynamic Font Size Calculation ---
        def get_dynamic_fontsize(text, cell_width_inches):
            if not text:
                return 1
            # This factor is empirical, adjusts font size to fill ~90% of cell width
            # A lower factor (e.g., 0.5) results in larger text.
            ASPECT_RATIO_FACTOR = 0.55
            num_chars = len(text)
            # Formula: (target_width_points) / (num_characters * aspect_ratio)
            fontsize = (cell_width_inches * 0.9 * 72) / (num_chars * ASPECT_RATIO_FACTOR)
            return max(10, fontsize) # Return at least size 10

        cell_width_inches = A5_WIDTH_IN / NUM_COLS

        # --- Draw each data cell ---
        for idx, (hall, end_time) in enumerate(sorted_data):
            if hall and end_time:
                row_grid = idx // NUM_COLS + 1  # +1 to skip date row
                col_grid = idx % NUM_COLS
                
                ax = fig.add_subplot(gs[row_grid, col_grid])
                
                display_text = f"{hall} {end_time}"
                
                # Calculate optimal font size
                fontsize = get_dynamic_fontsize(display_text, cell_width_inches)

                ax.text(0.5, 0.5, display_text,
                        fontsize=fontsize,
                        fontweight='bold',
                        ha='center',
                        va='center',
                        transform=ax.transAxes)

                # --- 2. Change Cell Border ---
                # Set a dotted gray border
                for spine in ax.spines.values():
                    spine.set_visible(True)
                    spine.set_linestyle((0, (1, 2))) # Dotted line: (0, (on, off))
                    spine.set_edgecolor(BORDER_COLOR)
                    spine.set_linewidth(1.5)

                ax.set_xticks([])
                ax.set_yticks([])
                ax.set_facecolor('none')

        # --- Add date and title information to the top row ---
        ax_date = fig.add_subplot(gs[0, :])
        ax_date.text(0.01, 0.5, f"{date_str} {title}",
                     fontsize=12,
                     color=DATE_COLOR,
                     fontweight='bold',
                     ha='left',
                     va='center',
                     transform=ax_date.transAxes)
        
        # Hide the border for the date cell
        for spine in ax_date.spines.values():
            spine.set_visible(False)
        ax_date.set_xticks([])
        ax_date.set_yticks([])
        ax_date.set_facecolor('none')

    # Process both the PNG and PDF figures with the new layout
    process_figure(png_fig)
    process_figure(pdf_fig)

    # --- Save PNG ---
    png_buffer = io.BytesIO()
    # Use pad_inches=0 because we handled margins with subplots_adjust
    png_fig.savefig(png_buffer, format='png', pad_inches=0)
    png_buffer.seek(0)
    png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
    plt.close(png_fig)

    # --- Save PDF ---
    pdf_buffer = io.BytesIO()
    with PdfPages(pdf_buffer) as pdf:
        # Use pad_inches=0 for PDF as well
        pdf.savefig(pdf_fig, pad_inches=0)
    pdf_buffer.seek(0)
    pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
    plt.close(pdf_fig)

    return {
        'png': f'data:image/png;base64,{png_base64}',
        'pdf': f'data:application/pdf;base64,{pdf_base64}'
    }

# --- PDF display function ---
def display_pdf(base64_pdf):
    """Embeds PDF in Streamlit for display"""
    pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
    return pdf_display

# Streamlit UI
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")

uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls"])

if uploaded_file:
    part1, part2, date_str = process_schedule(uploaded_file)

    if part1 is not None and part2 is not None:
        # Generate outputs containing both PNG and PDF data
        part1_output = create_print_layout(part1, "A", date_str)
        part2_output = create_print_layout(part2, "C", date_str)

        col1, col2 = st.columns(2)

        with col1:
            st.subheader("白班散场预览(时间 ≤ 17:30)")
            if part1_output:
                # Use tabs to show both PDF and PNG previews
                tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
                with tab1_1:
                    st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
                with tab1_2:
                    st.image(part1_output['png'])
            else:
                st.info("白班部分没有数据")

        with col2:
            st.subheader("夜班散场预览(时间 > 17:30)")
            if part2_output:
                # Use tabs to show both PDF and PNG previews
                tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
                with tab2_1:
                    st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
                with tab2_2:
                    st.image(part2_output['png'])
            else:
                st.info("夜班部分没有数据")