Spaces:
Running
Running
File size: 12,568 Bytes
e522499 7704499 e522499 79debab e522499 cd91a84 e522499 cd91a84 e522499 cd91a84 e522499 cd91a84 79debab e522499 7704499 79debab b7d31cf 79debab 7704499 cd91a84 79debab 7704499 cd91a84 79debab 7704499 cd91a84 79debab cd91a84 79debab e522499 cd91a84 79debab cd91a84 79debab cd91a84 79debab cd91a84 79debab cd91a84 79debab e522499 cd91a84 e522499 79debab e522499 cd91a84 e522499 79debab e522499 28f28d0 cd91a84 28f28d0 95f254d cd91a84 79debab cd91a84 79debab cd91a84 79debab cd91a84 79debab cd91a84 79debab cd91a84 79debab e522499 cd91a84 e522499 79debab e522499 cd91a84 e522499 cd91a84 e522499 79debab cd91a84 e522499 cd91a84 7704499 e522499 cd91a84 e522499 cd91a84 34b21e7 cd91a84 7704499 cd91a84 7704499 95f254d e522499 7704499 cd91a84 7704499 95f254d e522499 95f254d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import math
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.font_manager as fm # 新增导入
import os # 新增导入
# --- 全局常量 ---
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = 'grey'
DATE_COLOR = '#A9A9A9'
FONT_PATH = 'SimHei.ttf' # 字体文件路径
# --- 字体设置 ---
FONT_BOLD = None
FONT_REGULAR = None
FONT_WARNING_ISSUED = False
def get_font_properties():
"""加载字体文件并返回 FontProperties 对象"""
global FONT_BOLD, FONT_REGULAR, FONT_WARNING_ISSUED
if FONT_BOLD is None: # 只加载一次
if os.path.exists(FONT_PATH):
try:
FONT_BOLD = fm.FontProperties(fname=FONT_PATH, weight='bold')
FONT_REGULAR = fm.FontProperties(fname=FONT_PATH, weight='normal')
except Exception as e:
if not FONT_WARNING_ISSUED:
st.warning(f"加载字体 '{FONT_PATH}' 失败: {e}. 将使用默认字体。")
FONT_WARNING_ISSUED = True
else:
if not FONT_WARNING_ISSUED:
st.warning(f"字体文件 '{FONT_PATH}' 未找到。请将其放置在代码同目录下。将使用默认字体。")
FONT_WARNING_ISSUED = True
def get_font_args(style='regular'):
"""根据请求的样式返回字体参数字典"""
get_font_properties() # 确保字体已加载
if style == 'bold' and FONT_BOLD:
return {'fontproperties': FONT_BOLD}
if style == 'regular' and FONT_REGULAR:
return {'fontproperties': FONT_REGULAR}
# Fallback
return {'fontfamily': 'sans-serif', 'weight': 'bold' if style == 'bold' else 'normal'}
def process_schedule(file):
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
try:
# 读取 Excel,跳过前 8 行
df = pd.read_excel(file, skiprows=8)
# 提取所需列 (G9, H9, J9)
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
df.columns = ['Hall', 'StartTime', 'EndTime']
# 清理数据
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
# 转换影厅格式为 "#号" 格式
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
# 保存原始时间字符串用于诊断
df['original_end'] = df['EndTime']
# 转换时间为 datetime 对象
base_date = datetime.today().date()
df['StartTime'] = pd.to_datetime(df['StartTime'])
df['EndTime'] = pd.to_datetime(df['EndTime'])
# 设置基准时间
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
# 处理跨天情况
if business_end < business_start:
business_end += timedelta(days=1)
# 标准化所有时间到同一天
for idx, row in df.iterrows():
end_time = row['EndTime']
if end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
if row['StartTime'].hour >= 21 and end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
# 筛选营业时间内的场次
df['time_for_comparison'] = df['EndTime'].apply(
lambda x: datetime.combine(base_date, x.time())
)
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
valid_times = (
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
)
df = df[valid_times]
# 按散场时间排序
df = df.sort_values('EndTime')
# 分割数据
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
split_time_for_comparison = df['time_for_comparison'].apply(
lambda x: datetime.combine(base_date, split_time.time())
)
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
# 格式化时间显示
for part in [part1, part2]:
part['EndTime'] = part['EndTime'].dt.strftime('%-H:%M')
# 关键修改:精确读取C6单元格
date_df = pd.read_excel(
file,
skiprows=5, # 跳过前5行(0-4)
nrows=1, # 只读1行
usecols=[2], # 第三列(C列)
header=None # 无表头
)
date_cell = date_df.iloc[0, 0]
try:
# 处理不同日期格式
if isinstance(date_cell, str):
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
else:
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
except:
date_str = datetime.today().strftime('%Y-%m-%d')
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
except Exception as e:
st.error(f"处理文件时出错: {str(e)}")
return None, None, None
def create_print_layout(data, title, date_str):
"""创建基于精确表格布局的打印页面 (PNG 和 PDF)"""
if data.empty:
return None
# --- 1. 布局和尺寸计算 ---
A5_WIDTH_IN, A5_HEIGHT_IN = 5.83, 8.27
DPI = 300
MARGIN = 0.25 # 页边距 (英寸)
HEADER_HEIGHT_IN = 0.3 # 日期标题栏高度 (英寸)
content_width = A5_WIDTH_IN - (2 * MARGIN)
content_height = A5_HEIGHT_IN - (2 * MARGIN)
total_items = len(data)
num_cols = 3
num_rows = math.ceil(total_items / num_cols)
grid_height = content_height - HEADER_HEIGHT_IN
cell_width = content_width / num_cols
cell_height = grid_height / num_rows if num_rows > 0 else 0
# --- 2. 动态字体大小计算 ---
def calculate_font_size(fig):
# 使用一个典型的宽字符串来估算
sample_text = "8 88:88"
target_width = cell_width * 0.9 # 目标宽度为单元格宽度的90%
# 用初始字号10来测量
initial_fontsize = 10
t = fig.text(0.5, 0.5, sample_text, fontsize=initial_fontsize, **get_font_args('bold'))
# 渲染并获取边界框(以英寸为单位)
bbox = t.get_window_extent(renderer=fig.canvas.get_renderer())
text_width_in = bbox.width / fig.get_dpi()
t.remove() # 移除临时文本
# 根据宽度比例调整字体大小
if text_width_in > 0:
scale_factor = target_width / text_width_in
return initial_fontsize * scale_factor
return initial_fontsize # 备用
# --- 3. 数据准备 (Z字形排序) ---
data_values = data.values.tolist()
while len(data_values) % num_cols != 0:
data_values.append(['', ''])
rows_per_col_layout = math.ceil(len(data_values) / num_cols)
sorted_data = [['', '']] * len(data_values)
for i, item in enumerate(data_values):
if item[0] and item[1]:
row_in_col = i % rows_per_col_layout
col_idx = i // rows_per_col_layout
new_index = row_in_col * num_cols + col_idx
if new_index < len(sorted_data):
sorted_data[new_index] = item
# --- 4. 绘图 ---
fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=DPI)
final_fontsize = calculate_font_size(fig)
index_fontsize = final_fontsize * 0.35
date_fontsize = final_fontsize * 0.5
# 绘制日期头
header_ax = fig.add_axes([MARGIN / A5_WIDTH_IN, (A5_HEIGHT_IN - MARGIN - HEADER_HEIGHT_IN) / A5_HEIGHT_IN, content_width / A5_WIDTH_IN, HEADER_HEIGHT_IN / A5_HEIGHT_IN])
header_ax.text(0.01, 0.5, f"{date_str} {title}",
fontsize=date_fontsize,
color=DATE_COLOR,
ha='left',
va='center',
transform=header_ax.transAxes,
**get_font_args('bold'))
header_ax.set_axis_off()
# 绘制每个单元格
for idx, (hall, end_time) in enumerate(sorted_data):
if hall and end_time:
row_grid = idx // num_cols
col_grid = idx % num_cols
# 计算单元格的绝对位置(从左下角开始,单位:英寸)
x_pos_in = MARGIN + (col_grid * cell_width)
y_pos_in = MARGIN + ( (num_rows - 1 - row_grid) * cell_height )
# 转换为 Figure 的相对坐标 [left, bottom, width, height]
ax_rect = [x_pos_in / A5_WIDTH_IN, y_pos_in / A5_HEIGHT_IN, cell_width / A5_WIDTH_IN, cell_height / A5_HEIGHT_IN]
ax = fig.add_axes(ax_rect)
# 绘制主要文本
display_text = f"{hall}{end_time}"
ax.text(0.5, 0.5, display_text,
fontsize=final_fontsize,
ha='center',
va='center',
transform=ax.transAxes,
**get_font_args('bold'))
# 绘制左上角序号
ax.text(0.08, 0.92, str(idx + 1),
fontsize=index_fontsize,
color=BORDER_COLOR,
ha='left',
va='top',
transform=ax.transAxes,
**get_font_args('regular'))
# 设置边框为灰色点状虚线
for spine in ax.spines.values():
spine.set_color(BORDER_COLOR)
spine.set_linestyle(':')
spine.set_linewidth(1)
ax.set_xticks([])
ax.set_yticks([])
# --- 5. 保存到内存 ---
# 保存 PNG
png_buffer = io.BytesIO()
fig.savefig(png_buffer, format='png', pad_inches=0)
png_buffer.seek(0)
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
# 保存 PDF
pdf_buffer = io.BytesIO()
fig.savefig(pdf_buffer, format='pdf', pad_inches=0)
pdf_buffer.seek(0)
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
plt.close(fig)
return {
'png': f'data:image/png;base64,{png_base64}',
'pdf': f'data:application/pdf;base64,{pdf_base64}'
}
def display_pdf(base64_pdf):
"""在Streamlit中嵌入显示PDF"""
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
return pdf_display
# --- Streamlit 界面 ---
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")
# 检查并加载字体,如有需要会显示警告
get_font_properties()
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls"])
if uploaded_file:
part1, part2, date_str = process_schedule(uploaded_file)
if part1 is not None and part2 is not None:
# 生成包含 PNG 和 PDF 的字典
part1_output = create_print_layout(part1, "A", date_str)
part2_output = create_print_layout(part2, "C", date_str)
col1, col2 = st.columns(2)
with col1:
st.subheader("白班散场预览(时间 ≤ 17:30)")
if part1_output:
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab1_1:
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
with tab1_2:
st.image(part1_output['png'])
else:
st.info("白班部分没有数据")
with col2:
st.subheader("夜班散场预览(时间 > 17:30)")
if part2_output:
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
with tab2_1:
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
with tab2_2:
st.image(part2_output['png'])
else:
st.info("夜班部分没有数据") |