Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,84 +8,89 @@ import matplotlib.gridspec as gridspec
|
|
8 |
import math
|
9 |
from matplotlib.backends.backend_pdf import PdfPages
|
10 |
|
|
|
11 |
SPLIT_TIME = "17:30"
|
12 |
BUSINESS_START = "09:30"
|
13 |
BUSINESS_END = "01:30"
|
14 |
-
BORDER_COLOR = '#
|
15 |
DATE_COLOR = '#A9A9A9'
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def process_schedule(file):
|
18 |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
19 |
try:
|
20 |
# 读取 Excel,跳过前 8 行
|
21 |
df = pd.read_excel(file, skiprows=8)
|
22 |
-
|
23 |
# 提取所需列 (G9, H9, J9)
|
24 |
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
|
25 |
df.columns = ['Hall', 'StartTime', 'EndTime']
|
26 |
-
|
27 |
# 清理数据
|
28 |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
29 |
-
|
30 |
# 转换影厅格式为 "#号" 格式
|
31 |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
|
32 |
-
|
33 |
# 保存原始时间字符串用于诊断
|
34 |
df['original_end'] = df['EndTime']
|
35 |
-
|
36 |
# 转换时间为 datetime 对象
|
37 |
base_date = datetime.today().date()
|
38 |
df['StartTime'] = pd.to_datetime(df['StartTime'])
|
39 |
df['EndTime'] = pd.to_datetime(df['EndTime'])
|
40 |
-
|
41 |
# 设置基准时间
|
42 |
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
|
43 |
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
|
44 |
-
|
45 |
# 处理跨天情况
|
46 |
if business_end < business_start:
|
47 |
business_end += timedelta(days=1)
|
48 |
-
|
49 |
# 标准化所有时间到同一天
|
50 |
for idx, row in df.iterrows():
|
51 |
end_time = row['EndTime']
|
52 |
if end_time.hour < 9:
|
53 |
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
54 |
-
|
55 |
if row['StartTime'].hour >= 21 and end_time.hour < 9:
|
56 |
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
57 |
-
|
58 |
# 筛选营业时间内的场次
|
59 |
df['time_for_comparison'] = df['EndTime'].apply(
|
60 |
lambda x: datetime.combine(base_date, x.time())
|
61 |
)
|
62 |
-
|
63 |
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
|
64 |
-
|
65 |
valid_times = (
|
66 |
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
|
67 |
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
|
68 |
)
|
69 |
-
|
70 |
df = df[valid_times]
|
71 |
-
|
72 |
# 按散场时间排序
|
73 |
df = df.sort_values('EndTime')
|
74 |
-
|
75 |
# 分割数据
|
76 |
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
|
77 |
split_time_for_comparison = df['time_for_comparison'].apply(
|
78 |
lambda x: datetime.combine(base_date, split_time.time())
|
79 |
)
|
80 |
-
|
81 |
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
|
82 |
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
|
83 |
-
|
84 |
# 格式化时间显示
|
85 |
for part in [part1, part2]:
|
86 |
-
part['EndTime'] = part['EndTime'].dt.strftime('%-
|
87 |
-
|
88 |
-
#
|
89 |
date_df = pd.read_excel(
|
90 |
file,
|
91 |
skiprows=5, # 跳过前5行(0-4)
|
@@ -94,7 +99,7 @@ def process_schedule(file):
|
|
94 |
header=None # 无表头
|
95 |
)
|
96 |
date_cell = date_df.iloc[0, 0]
|
97 |
-
|
98 |
try:
|
99 |
# 处理不同日期格式
|
100 |
if isinstance(date_cell, str):
|
@@ -103,104 +108,97 @@ def process_schedule(file):
|
|
103 |
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
|
104 |
except:
|
105 |
date_str = datetime.today().strftime('%Y-%m-%d')
|
106 |
-
|
107 |
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
|
108 |
-
|
109 |
except Exception as e:
|
110 |
st.error(f"处理文件时出错: {str(e)}")
|
111 |
return None, None, None
|
112 |
|
|
|
113 |
def create_print_layout(data, title, date_str):
|
114 |
-
"""
|
115 |
-
创建基于精确A5网格的打印布局 (PNG 和 PDF),具有点状虚线边框和动态字体大小。
|
116 |
-
"""
|
117 |
if data.empty:
|
118 |
return None
|
119 |
|
120 |
-
#
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
133 |
|
134 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
# 准备数据,按Z字形(列优先)排序
|
152 |
data_values = data.values.tolist()
|
153 |
-
while len(data_values) %
|
154 |
data_values.append(['', ''])
|
155 |
|
156 |
-
rows_per_col_layout = math.ceil(len(data_values) /
|
157 |
sorted_data = [['', '']] * len(data_values)
|
158 |
for i, item in enumerate(data_values):
|
159 |
if item[0] and item[1]:
|
160 |
row_in_col = i % rows_per_col_layout
|
161 |
col_idx = i // rows_per_col_layout
|
162 |
-
new_index = row_in_col *
|
163 |
if new_index < len(sorted_data):
|
164 |
sorted_data[new_index] = item
|
165 |
-
|
166 |
-
# ---
|
167 |
-
# 1. 找到最长的文本字符串
|
168 |
-
longest_string = ""
|
169 |
-
for hall, end_time in sorted_data:
|
170 |
-
if hall and end_time:
|
171 |
-
text = f"{hall}{end_time}"
|
172 |
-
if len(text) > len(longest_string):
|
173 |
-
longest_string = text
|
174 |
-
|
175 |
-
base_fontsize = 10 # 默认字体大小
|
176 |
-
if longest_string:
|
177 |
-
# 2. 计算单元格宽度(以磅为单位,1英寸=72磅)
|
178 |
-
fig_width_pt = fig.get_figwidth() * 72
|
179 |
-
cell_width_pt = fig_width_pt / num_cols
|
180 |
-
|
181 |
-
# 3. 目标文本宽度为单元格宽度的80%
|
182 |
-
target_text_width_pt = cell_width_pt * 0.8
|
183 |
-
|
184 |
-
# 4. 根据经验系数估算字体大小
|
185 |
-
# (字符宽度约等于字体大小的0.6倍)
|
186 |
-
char_width_factor = 0.6
|
187 |
-
base_fontsize = (target_text_width_pt / len(longest_string)) / char_width_factor
|
188 |
-
|
189 |
-
# 绘制数据单元格
|
190 |
for idx, (hall, end_time) in enumerate(sorted_data):
|
191 |
if hall and end_time:
|
192 |
-
row_grid = idx //
|
193 |
-
col_grid = idx %
|
194 |
-
|
195 |
ax = fig.add_subplot(gs[row_grid, col_grid])
|
196 |
|
197 |
-
#
|
198 |
for spine in ax.spines.values():
|
199 |
spine.set_visible(True)
|
|
|
200 |
spine.set_color(BORDER_COLOR)
|
201 |
-
spine.
|
202 |
-
spine.set_linewidth(1)
|
203 |
|
|
|
204 |
display_text = f"{hall}{end_time}"
|
205 |
ax.text(0.5, 0.5, display_text,
|
206 |
fontsize=base_fontsize,
|
@@ -210,35 +208,37 @@ def create_print_layout(data, title, date_str):
|
|
210 |
|
211 |
ax.set_xticks([])
|
212 |
ax.set_yticks([])
|
|
|
213 |
|
214 |
-
#
|
215 |
ax_date = fig.add_subplot(gs[0, :])
|
216 |
-
ax_date.text(0.
|
217 |
-
fontsize=base_fontsize * 0.
|
218 |
-
color=DATE_COLOR,
|
219 |
-
fontweight='bold',
|
220 |
ha='left', va='center',
|
221 |
transform=ax_date.transAxes)
|
222 |
-
ax_date.set_axis_off()
|
|
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
227 |
|
228 |
# 保存为 PNG
|
229 |
png_buffer = io.BytesIO()
|
230 |
-
|
231 |
png_buffer.seek(0)
|
232 |
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
|
233 |
-
plt.close(png_fig)
|
234 |
|
235 |
# 保存为 PDF
|
236 |
pdf_buffer = io.BytesIO()
|
237 |
with PdfPages(pdf_buffer) as pdf:
|
238 |
-
pdf.savefig(
|
239 |
pdf_buffer.seek(0)
|
240 |
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
|
241 |
-
|
|
|
242 |
|
243 |
return {
|
244 |
'png': f'data:image/png;base64,{png_base64}',
|
@@ -251,7 +251,7 @@ def display_pdf(base64_pdf):
|
|
251 |
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
|
252 |
return pdf_display
|
253 |
|
254 |
-
# Streamlit 界面
|
255 |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
|
256 |
st.title("散厅时间快捷打印")
|
257 |
|
|
|
8 |
import math
|
9 |
from matplotlib.backends.backend_pdf import PdfPages
|
10 |
|
11 |
+
# Constants
|
12 |
SPLIT_TIME = "17:30"
|
13 |
BUSINESS_START = "09:30"
|
14 |
BUSINESS_END = "01:30"
|
15 |
+
BORDER_COLOR = 'grey' # Changed to grey for the new border
|
16 |
DATE_COLOR = '#A9A9A9'
|
17 |
+
A5_WIDTH_IN = 5.83
|
18 |
+
A5_HEIGHT_IN = 8.27
|
19 |
+
NUM_COLS = 3
|
20 |
+
|
21 |
|
22 |
def process_schedule(file):
|
23 |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
24 |
try:
|
25 |
# 读取 Excel,跳过前 8 行
|
26 |
df = pd.read_excel(file, skiprows=8)
|
27 |
+
|
28 |
# 提取所需列 (G9, H9, J9)
|
29 |
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
|
30 |
df.columns = ['Hall', 'StartTime', 'EndTime']
|
31 |
+
|
32 |
# 清理数据
|
33 |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
34 |
+
|
35 |
# 转换影厅格式为 "#号" 格式
|
36 |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
|
37 |
+
|
38 |
# 保存原始时间字符串用于诊断
|
39 |
df['original_end'] = df['EndTime']
|
40 |
+
|
41 |
# 转换时间为 datetime 对象
|
42 |
base_date = datetime.today().date()
|
43 |
df['StartTime'] = pd.to_datetime(df['StartTime'])
|
44 |
df['EndTime'] = pd.to_datetime(df['EndTime'])
|
45 |
+
|
46 |
# 设置基准时间
|
47 |
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
|
48 |
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
|
49 |
+
|
50 |
# 处理跨天情况
|
51 |
if business_end < business_start:
|
52 |
business_end += timedelta(days=1)
|
53 |
+
|
54 |
# 标准化所有时间到同一天
|
55 |
for idx, row in df.iterrows():
|
56 |
end_time = row['EndTime']
|
57 |
if end_time.hour < 9:
|
58 |
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
59 |
+
|
60 |
if row['StartTime'].hour >= 21 and end_time.hour < 9:
|
61 |
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
62 |
+
|
63 |
# 筛选营业时间内的场次
|
64 |
df['time_for_comparison'] = df['EndTime'].apply(
|
65 |
lambda x: datetime.combine(base_date, x.time())
|
66 |
)
|
67 |
+
|
68 |
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
|
69 |
+
|
70 |
valid_times = (
|
71 |
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
|
72 |
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
|
73 |
)
|
74 |
+
|
75 |
df = df[valid_times]
|
76 |
+
|
77 |
# 按散场时间排序
|
78 |
df = df.sort_values('EndTime')
|
79 |
+
|
80 |
# 分割数据
|
81 |
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
|
82 |
split_time_for_comparison = df['time_for_comparison'].apply(
|
83 |
lambda x: datetime.combine(base_date, split_time.time())
|
84 |
)
|
85 |
+
|
86 |
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
|
87 |
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
|
88 |
+
|
89 |
# 格式化时间显示
|
90 |
for part in [part1, part2]:
|
91 |
+
part['EndTime'] = part['EndTime'].dt.strftime('%-H:%M')
|
92 |
+
|
93 |
+
# 精确读取C6单元格
|
94 |
date_df = pd.read_excel(
|
95 |
file,
|
96 |
skiprows=5, # 跳过前5行(0-4)
|
|
|
99 |
header=None # 无表头
|
100 |
)
|
101 |
date_cell = date_df.iloc[0, 0]
|
102 |
+
|
103 |
try:
|
104 |
# 处理不同日期格式
|
105 |
if isinstance(date_cell, str):
|
|
|
108 |
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
|
109 |
except:
|
110 |
date_str = datetime.today().strftime('%Y-%m-%d')
|
111 |
+
|
112 |
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
|
113 |
+
|
114 |
except Exception as e:
|
115 |
st.error(f"处理文件时出错: {str(e)}")
|
116 |
return None, None, None
|
117 |
|
118 |
+
|
119 |
def create_print_layout(data, title, date_str):
|
120 |
+
"""创建精确的 A5 表格打印布局 (PNG 和 PDF)"""
|
|
|
|
|
121 |
if data.empty:
|
122 |
return None
|
123 |
|
124 |
+
# --- 内部绘图函数 ---
|
125 |
+
def generate_figure():
|
126 |
+
# --- 1. 计算布局和字体大小 ---
|
127 |
+
total_items = len(data)
|
128 |
+
num_rows = math.ceil(total_items / NUM_COLS) if total_items > 0 else 1
|
129 |
|
130 |
+
# 定义日期标题行的高度(英寸),数据行将填充剩余空间
|
131 |
+
date_header_height_in = 0.3
|
132 |
+
data_area_height_in = A5_HEIGHT_IN - date_header_height_in
|
133 |
|
134 |
+
# 计算每个数据单元格的尺寸(英寸)
|
135 |
+
cell_width_in = A5_WIDTH_IN / NUM_COLS
|
136 |
+
cell_height_in = data_area_height_in / num_rows
|
137 |
+
|
138 |
+
# 将单元格宽度转换为点(1 英寸 = 72 点)
|
139 |
+
cell_width_pt = cell_width_in * 72
|
140 |
+
cell_height_pt = cell_height_in * 72
|
141 |
|
142 |
+
# --- 动态字体大小计算 ---
|
143 |
+
# 目标:文本总宽度为单元格宽度的 90%
|
144 |
+
target_text_width_pt = cell_width_pt * 0.9
|
145 |
+
# 启发式估算:假设最长文本为 "10 23:59" (8个字符),平均字符宽度约为字体大小的0.6倍
|
146 |
+
# FONT_SIZE = target_width / (num_chars * avg_char_width_factor)
|
147 |
+
fontsize_from_width = target_text_width_pt / (8 * 0.6)
|
148 |
+
# 字体高度不能超过单元格高度(留出20%的垂直边距)
|
149 |
+
fontsize_from_height = cell_height_pt * 0.8
|
150 |
+
# 选择两者中较小的一个,以确保文本能完全容纳
|
151 |
+
base_fontsize = min(fontsize_from_width, fontsize_from_height)
|
152 |
+
|
153 |
+
# --- 2. 创建图形和网格 ---
|
154 |
+
fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300)
|
155 |
+
# 设置无边距,让网格填满整个图纸
|
156 |
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
|
157 |
|
158 |
+
# 设置字体
|
159 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
160 |
+
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # 确保字体可用
|
161 |
+
|
162 |
+
# 创建网格,顶部为日期行,下方为数据行
|
163 |
+
# 使用高度(英寸)作为比率,GridSpec会自动归一化
|
164 |
+
gs = gridspec.GridSpec(
|
165 |
+
num_rows + 1, NUM_COLS,
|
166 |
+
hspace=0, wspace=0, # 无单元格间距
|
167 |
+
height_ratios=[date_header_height_in] + [cell_height_in] * num_rows,
|
168 |
+
figure=fig
|
169 |
+
)
|
170 |
+
|
171 |
+
# --- 3. 补全和排序数据 ---
|
|
|
172 |
data_values = data.values.tolist()
|
173 |
+
while len(data_values) % NUM_COLS != 0:
|
174 |
data_values.append(['', ''])
|
175 |
|
176 |
+
rows_per_col_layout = math.ceil(len(data_values) / NUM_COLS)
|
177 |
sorted_data = [['', '']] * len(data_values)
|
178 |
for i, item in enumerate(data_values):
|
179 |
if item[0] and item[1]:
|
180 |
row_in_col = i % rows_per_col_layout
|
181 |
col_idx = i // rows_per_col_layout
|
182 |
+
new_index = row_in_col * NUM_COLS + col_idx
|
183 |
if new_index < len(sorted_data):
|
184 |
sorted_data[new_index] = item
|
185 |
+
|
186 |
+
# --- 4. 绘制数据单元格 ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
for idx, (hall, end_time) in enumerate(sorted_data):
|
188 |
if hall and end_time:
|
189 |
+
row_grid = idx // NUM_COLS + 1 # +1 因为日期行占了第0行
|
190 |
+
col_grid = idx % NUM_COLS
|
191 |
+
|
192 |
ax = fig.add_subplot(gs[row_grid, col_grid])
|
193 |
|
194 |
+
# --- 设置点状虚线边框 ---
|
195 |
for spine in ax.spines.values():
|
196 |
spine.set_visible(True)
|
197 |
+
spine.set_linestyle((0, (1, 2))) # 点状线: (offset, (on_length, off_length))
|
198 |
spine.set_color(BORDER_COLOR)
|
199 |
+
spine.set_linewidth(0.75) # 点状线可能需要稍粗一点才清晰
|
|
|
200 |
|
201 |
+
# 绘制居中对齐的文本
|
202 |
display_text = f"{hall}{end_time}"
|
203 |
ax.text(0.5, 0.5, display_text,
|
204 |
fontsize=base_fontsize,
|
|
|
208 |
|
209 |
ax.set_xticks([])
|
210 |
ax.set_yticks([])
|
211 |
+
ax.set_facecolor('none')
|
212 |
|
213 |
+
# --- 5. 绘制日期标题 ---
|
214 |
ax_date = fig.add_subplot(gs[0, :])
|
215 |
+
ax_date.text(0.01, 0.5, f"{date_str} {title}",
|
216 |
+
fontsize=base_fontsize * 0.5, # 日期字体稍小
|
217 |
+
color=DATE_COLOR, fontweight='bold',
|
|
|
218 |
ha='left', va='center',
|
219 |
transform=ax_date.transAxes)
|
220 |
+
ax_date.set_axis_off() # 完全隐藏日期行的边框和刻度
|
221 |
+
ax_date.set_facecolor('none')
|
222 |
|
223 |
+
return fig
|
224 |
+
|
225 |
+
# --- 生成并保存图形 ---
|
226 |
+
fig_for_output = generate_figure()
|
227 |
|
228 |
# 保存为 PNG
|
229 |
png_buffer = io.BytesIO()
|
230 |
+
fig_for_output.savefig(png_buffer, format='png') # 无需 bbox_inches='tight'
|
231 |
png_buffer.seek(0)
|
232 |
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
|
|
|
233 |
|
234 |
# 保存为 PDF
|
235 |
pdf_buffer = io.BytesIO()
|
236 |
with PdfPages(pdf_buffer) as pdf:
|
237 |
+
pdf.savefig(fig_for_output) # 无需 bbox_inches='tight'
|
238 |
pdf_buffer.seek(0)
|
239 |
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
|
240 |
+
|
241 |
+
plt.close(fig_for_output) # 关闭图形,释放内存
|
242 |
|
243 |
return {
|
244 |
'png': f'data:image/png;base64,{png_base64}',
|
|
|
251 |
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
|
252 |
return pdf_display
|
253 |
|
254 |
+
# --- Streamlit 界面 ---
|
255 |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
|
256 |
st.title("散厅时间快捷打印")
|
257 |
|