Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
from datetime import datetime, timedelta
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
import matplotlib.gridspec as gridspec
|
8 |
+
import math
|
9 |
+
from matplotlib.backends.backend_pdf import PdfPages # 新增导入
|
10 |
+
|
11 |
+
SPLIT_TIME = "17:30"
|
12 |
+
BUSINESS_START = "09:30"
|
13 |
+
BUSINESS_END = "01:30"
|
14 |
+
BORDER_COLOR = '#A9A9A9'
|
15 |
+
DATE_COLOR = '#A9A9A9'
|
16 |
+
|
17 |
+
def process_schedule(file):
|
18 |
+
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
19 |
+
try:
|
20 |
+
# 读取 Excel,跳过前 8 行
|
21 |
+
df = pd.read_excel(file, skiprows=8)
|
22 |
+
|
23 |
+
# 提取所需列 (G9, H9, J9)
|
24 |
+
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
|
25 |
+
df.columns = ['Hall', 'StartTime', 'EndTime']
|
26 |
+
|
27 |
+
# 清理数据
|
28 |
+
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
29 |
+
|
30 |
+
# 转换影厅格式为 "#号" 格式
|
31 |
+
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
|
32 |
+
|
33 |
+
# 保存原始时间字符串用于诊断
|
34 |
+
df['original_end'] = df['EndTime']
|
35 |
+
|
36 |
+
# 转换时间为 datetime 对象
|
37 |
+
base_date = datetime.today().date()
|
38 |
+
df['StartTime'] = pd.to_datetime(df['StartTime'])
|
39 |
+
df['EndTime'] = pd.to_datetime(df['EndTime'])
|
40 |
+
|
41 |
+
# 设置基准时间
|
42 |
+
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
|
43 |
+
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
|
44 |
+
|
45 |
+
# 处理跨天情况
|
46 |
+
if business_end < business_start:
|
47 |
+
business_end += timedelta(days=1)
|
48 |
+
|
49 |
+
# 标准化所有时间到同一天
|
50 |
+
for idx, row in df.iterrows():
|
51 |
+
end_time = row['EndTime']
|
52 |
+
if end_time.hour < 9:
|
53 |
+
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
54 |
+
|
55 |
+
if row['StartTime'].hour >= 21 and end_time.hour < 9:
|
56 |
+
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
57 |
+
|
58 |
+
# 筛选营业时间内的场次
|
59 |
+
df['time_for_comparison'] = df['EndTime'].apply(
|
60 |
+
lambda x: datetime.combine(base_date, x.time())
|
61 |
+
)
|
62 |
+
|
63 |
+
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
|
64 |
+
|
65 |
+
valid_times = (
|
66 |
+
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
|
67 |
+
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
|
68 |
+
)
|
69 |
+
|
70 |
+
df = df[valid_times]
|
71 |
+
|
72 |
+
# 按散场时间排序
|
73 |
+
df = df.sort_values('EndTime')
|
74 |
+
|
75 |
+
# 分割数据
|
76 |
+
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
|
77 |
+
split_time_for_comparison = df['time_for_comparison'].apply(
|
78 |
+
lambda x: datetime.combine(base_date, split_time.time())
|
79 |
+
)
|
80 |
+
|
81 |
+
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
|
82 |
+
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
|
83 |
+
|
84 |
+
# 格式化时间显示
|
85 |
+
for part in [part1, part2]:
|
86 |
+
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
|
87 |
+
|
88 |
+
# 关键修改:精确读取C6单元格
|
89 |
+
date_df = pd.read_excel(
|
90 |
+
file,
|
91 |
+
skiprows=5, # 跳过前5行(0-4)
|
92 |
+
nrows=1, # 只读1行
|
93 |
+
usecols=[2], # 第三列(C列)
|
94 |
+
header=None # 无表头
|
95 |
+
)
|
96 |
+
date_cell = date_df.iloc[0, 0]
|
97 |
+
|
98 |
+
try:
|
99 |
+
# 处理不同日期格式
|
100 |
+
if isinstance(date_cell, str):
|
101 |
+
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
|
102 |
+
else:
|
103 |
+
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
|
104 |
+
except:
|
105 |
+
date_str = datetime.today().strftime('%Y-%m-%d')
|
106 |
+
|
107 |
+
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
|
108 |
+
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"处理文件时出错: {str(e)}")
|
111 |
+
return None, None, None
|
112 |
+
|
113 |
+
def create_print_layout(data, title, date_str):
|
114 |
+
"""创建打印布局 (PNG 和 PDF)"""
|
115 |
+
if data.empty:
|
116 |
+
return None
|
117 |
+
|
118 |
+
# --- 创建 PNG 图形 ---
|
119 |
+
png_fig = plt.figure(figsize=(5.83, 8.27), dpi=300) # A5 竖向
|
120 |
+
png_ax_container = png_fig.add_subplot(111) # 创建一个容器轴,用于隐藏外部边框
|
121 |
+
png_ax_container.set_axis_off()
|
122 |
+
png_fig.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
123 |
+
|
124 |
+
# --- 创建 PDF 图形 ---
|
125 |
+
pdf_fig = plt.figure(figsize=(5.83, 8.27), dpi=300) # A5 竖向
|
126 |
+
pdf_ax_container = pdf_fig.add_subplot(111)
|
127 |
+
pdf_ax_container.set_axis_off()
|
128 |
+
pdf_fig.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
129 |
+
|
130 |
+
# --- 内部绘图函数 ---
|
131 |
+
def process_figure(fig, is_pdf=False):
|
132 |
+
# 设置字体
|
133 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
134 |
+
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # 确保字体可用
|
135 |
+
|
136 |
+
# 计算行数和总数
|
137 |
+
total_items = len(data)
|
138 |
+
num_cols = 3
|
139 |
+
num_rows = math.ceil(total_items / num_cols)
|
140 |
+
|
141 |
+
# 创建网格 (在 figure 内部创建)
|
142 |
+
gs = gridspec.GridSpec(num_rows + 1, num_cols, hspace=0.1, wspace=0.1, height_ratios=[0.2] + [1] * num_rows, figure=fig) # 将日期行放在顶部
|
143 |
+
|
144 |
+
# 调整基础字体大小,避免过大或过小
|
145 |
+
# A5 宽度大约 1749 像素 @ 300dpi, 高度 2481
|
146 |
+
# 每列宽度约 1749 * 0.9 / 3 = 525 像素
|
147 |
+
# 每行高度约 (2481 * 0.9 * (1 / (1.2))) / num_rows
|
148 |
+
# 字体大小与单元格大小相关,这里用经验值调整
|
149 |
+
available_height_per_row = (8.27 * 0.9 * (1 / 1.2)) / num_rows if num_rows > 0 else 1
|
150 |
+
base_fontsize = min(40, max(10, available_height_per_row * 72 * 0.5)) # 72 points per inch, 估算系数
|
151 |
+
|
152 |
+
data_values = data.values.tolist()
|
153 |
+
|
154 |
+
# 补全空位,确保是3的倍数
|
155 |
+
while len(data_values) % num_cols != 0:
|
156 |
+
data_values.append(['', ''])
|
157 |
+
|
158 |
+
rows_per_col_layout = math.ceil(len(data_values) / num_cols) # 按列优先排列的行数
|
159 |
+
|
160 |
+
# 按列优先排序数据 (Z字形)
|
161 |
+
sorted_data = [['', '']] * len(data_values)
|
162 |
+
for i, item in enumerate(data_values):
|
163 |
+
if item[0] and item[1]:
|
164 |
+
row_in_col = i % rows_per_col_layout
|
165 |
+
col_idx = i // rows_per_col_layout
|
166 |
+
new_index = row_in_col * num_cols + col_idx
|
167 |
+
if new_index < len(sorted_data):
|
168 |
+
sorted_data[new_index] = item
|
169 |
+
|
170 |
+
# 绘制数据单元格
|
171 |
+
for idx, (hall, end_time) in enumerate(sorted_data):
|
172 |
+
if hall and end_time:
|
173 |
+
row_grid = idx // num_cols + 1 # +1 因为日期占了第0行
|
174 |
+
col_grid = idx % num_cols
|
175 |
+
|
176 |
+
if row_grid < num_rows + 1: # 确保索引在网格内
|
177 |
+
ax = fig.add_subplot(gs[row_grid, col_grid]) # 使用 fig.add_subplot
|
178 |
+
|
179 |
+
for spine in ax.spines.values():
|
180 |
+
spine.set_color(BORDER_COLOR)
|
181 |
+
spine.set_linewidth(0.5)
|
182 |
+
|
183 |
+
display_text = f"{hall}{end_time}"
|
184 |
+
ax.text(0.5, 0.5, display_text,
|
185 |
+
fontsize=base_fontsize,
|
186 |
+
fontweight='bold',
|
187 |
+
ha='center',
|
188 |
+
va='center',
|
189 |
+
transform=ax.transAxes) # 使用相对坐标
|
190 |
+
|
191 |
+
ax.set_xticks([])
|
192 |
+
ax.set_yticks([])
|
193 |
+
else:
|
194 |
+
print(f"Warning: Index out of bounds - idx={idx}, row_grid={row_grid}, col_grid={col_grid}")
|
195 |
+
|
196 |
+
|
197 |
+
# 添加日期信息到第一个子图的顶部
|
198 |
+
ax_date = fig.add_subplot(gs[0, :]) # 跨越第一行的所有列
|
199 |
+
ax_date.text(0.01, 0.5, f"{date_str} {title}", # 调整位置和对齐
|
200 |
+
fontsize=base_fontsize * 0.5, # 调整日期字体大小
|
201 |
+
color=DATE_COLOR,
|
202 |
+
fontweight='bold',
|
203 |
+
ha='left',
|
204 |
+
va='center',
|
205 |
+
transform=ax_date.transAxes)
|
206 |
+
|
207 |
+
for spine in ax_date.spines.values():
|
208 |
+
spine.set_visible(False)
|
209 |
+
ax_date.set_xticks([])
|
210 |
+
ax_date.set_yticks([])
|
211 |
+
ax_date.set_facecolor('none') # 使背景透明
|
212 |
+
|
213 |
+
|
214 |
+
# --- 处理图形 ---
|
215 |
+
process_figure(png_fig)
|
216 |
+
process_figure(pdf_fig, is_pdf=True)
|
217 |
+
|
218 |
+
# --- 保存 PNG ---
|
219 |
+
png_buffer = io.BytesIO()
|
220 |
+
png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.05)
|
221 |
+
png_buffer.seek(0)
|
222 |
+
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
|
223 |
+
plt.close(png_fig)
|
224 |
+
|
225 |
+
# --- 保存 PDF ---
|
226 |
+
pdf_buffer = io.BytesIO()
|
227 |
+
with PdfPages(pdf_buffer) as pdf:
|
228 |
+
pdf.savefig(pdf_fig, bbox_inches='tight', pad_inches=0.05)
|
229 |
+
pdf_buffer.seek(0)
|
230 |
+
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
|
231 |
+
plt.close(pdf_fig)
|
232 |
+
|
233 |
+
return {
|
234 |
+
'png': f'data:image/png;base64,{png_base64}',
|
235 |
+
'pdf': f'data:application/pdf;base64,{pdf_base64}'
|
236 |
+
}
|
237 |
+
|
238 |
+
# --- 新增 PDF 显示函数 ---
|
239 |
+
def display_pdf(base64_pdf):
|
240 |
+
"""在Streamlit中嵌入显示PDF"""
|
241 |
+
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
|
242 |
+
return pdf_display
|
243 |
+
|
244 |
+
# Streamlit 界面
|
245 |
+
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
|
246 |
+
st.title("散厅时间快捷打印")
|
247 |
+
|
248 |
+
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls"])
|
249 |
+
|
250 |
+
if uploaded_file:
|
251 |
+
part1, part2, date_str = process_schedule(uploaded_file)
|
252 |
+
|
253 |
+
if part1 is not None and part2 is not None:
|
254 |
+
# 生成包含 PNG 和 PDF 的字典
|
255 |
+
part1_output = create_print_layout(part1, "A", date_str)
|
256 |
+
part2_output = create_print_layout(part2, "C", date_str)
|
257 |
+
|
258 |
+
col1, col2 = st.columns(2)
|
259 |
+
|
260 |
+
with col1:
|
261 |
+
st.subheader("白班散场预览(时间 ≤ 17:30)")
|
262 |
+
if part1_output:
|
263 |
+
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
|
264 |
+
with tab1_1:
|
265 |
+
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
|
266 |
+
with tab1_2:
|
267 |
+
st.image(part1_output['png'])
|
268 |
+
else:
|
269 |
+
st.info("白班部分没有数据")
|
270 |
+
|
271 |
+
with col2:
|
272 |
+
st.subheader("夜班散场预览(时间 > 17:30)")
|
273 |
+
if part2_output:
|
274 |
+
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
|
275 |
+
with tab2_1:
|
276 |
+
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
|
277 |
+
with tab2_2:
|
278 |
+
st.image(part2_output['png'])
|
279 |
+
else:
|
280 |
+
st.info("夜班部分没有数据")
|
281 |
+
|
282 |
+
|