Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,55 +1,38 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
st.set_page_config(layout="wide", page_title="
|
| 7 |
|
| 8 |
|
|
|
|
| 9 |
def clean_movie_title(title):
|
| 10 |
-
"""
|
| 11 |
-
清理并规范化电影标题。
|
| 12 |
-
根据用户最新指示:只保留字符串中第一个空格之前的部分。
|
| 13 |
-
"""
|
| 14 |
if not isinstance(title, str):
|
| 15 |
return title
|
| 16 |
-
# 将标题按第一个空格分割,并只取第一部分
|
| 17 |
return title.split(' ', 1)[0]
|
| 18 |
|
| 19 |
|
| 20 |
def style_efficiency(row):
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
高于 1.5 的淡绿色,低于 0.5 的淡红色。
|
| 24 |
-
"""
|
| 25 |
-
# 定义颜色
|
| 26 |
-
green = 'background-color: #E6F5E6;' # 淡绿色
|
| 27 |
-
red = 'background-color: #FFE5E5;' # 淡红色
|
| 28 |
default = ''
|
| 29 |
-
|
| 30 |
-
# 初始化样式列表,长度与行内元素数量一致
|
| 31 |
styles = [default] * len(row)
|
| 32 |
-
|
| 33 |
-
# 获取效率值
|
| 34 |
seat_efficiency = row.get('座次效率', 0)
|
| 35 |
session_efficiency = row.get('场次效率', 0)
|
| 36 |
-
|
| 37 |
-
# 判断并应用样式
|
| 38 |
if seat_efficiency > 1.5 or session_efficiency > 1.5:
|
| 39 |
styles = [green] * len(row)
|
| 40 |
elif seat_efficiency < 0.5 or session_efficiency < 0.5:
|
| 41 |
styles = [red] * len(row)
|
| 42 |
-
|
| 43 |
return styles
|
| 44 |
|
| 45 |
|
| 46 |
def process_and_analyze_data(df):
|
| 47 |
-
"""
|
| 48 |
-
核心数据处理与分析函数。
|
| 49 |
-
"""
|
| 50 |
if df.empty:
|
| 51 |
return pd.DataFrame()
|
| 52 |
-
|
| 53 |
analysis_df = df.groupby('影片名称_清理后').agg(
|
| 54 |
座位数=('座位数', 'sum'),
|
| 55 |
场次=('影片名称_清理后', 'size'),
|
|
@@ -57,112 +40,207 @@ def process_and_analyze_data(df):
|
|
| 57 |
人次=('总人次', 'sum')
|
| 58 |
).reset_index()
|
| 59 |
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
|
| 60 |
-
|
| 61 |
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
|
| 62 |
-
|
| 63 |
total_seats = analysis_df['座位数'].sum()
|
| 64 |
total_sessions = analysis_df['场次'].sum()
|
| 65 |
total_revenue = analysis_df['票房'].sum()
|
| 66 |
-
|
| 67 |
analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
|
| 68 |
analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
|
| 69 |
analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
|
| 70 |
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
|
| 71 |
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
|
| 72 |
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
'影片', '座位数', '场次', '票房', '人次', '均价',
|
| 76 |
-
'座次比', '场次比', '票房比', '座次效率', '场次效率'
|
| 77 |
-
]
|
| 78 |
analysis_df = analysis_df[final_columns]
|
| 79 |
-
|
| 80 |
return analysis_df
|
| 81 |
|
| 82 |
|
| 83 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
|
|
|
|
| 89 |
|
| 90 |
if uploaded_file is not None:
|
| 91 |
try:
|
|
|
|
| 92 |
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
|
| 93 |
-
|
| 94 |
-
df.rename(columns={
|
| 95 |
-
0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'
|
| 96 |
-
}, inplace=True)
|
| 97 |
-
|
| 98 |
required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次']
|
| 99 |
df = df[required_cols]
|
| 100 |
df.dropna(subset=['影片名称', '放映时间'], inplace=True)
|
| 101 |
-
|
| 102 |
for col in ['座位数', '总收入', '总人次']:
|
| 103 |
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
|
| 104 |
-
|
| 105 |
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
|
| 106 |
df.dropna(subset=['放映时间'], inplace=True)
|
| 107 |
-
|
| 108 |
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
st.
|
| 111 |
-
|
| 112 |
-
format_config = {
|
| 113 |
-
'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}',
|
| 114 |
-
'票房': '{:,.2f}', '均价': '{:.2f}', '座次比': '{:.2%}', '场次比': '{:.2%}',
|
| 115 |
-
'票房比': '{:.2%}', '座次效率': '{:.2f}', '场次效率': '{:.2f}',
|
| 116 |
-
}
|
| 117 |
-
|
| 118 |
-
# --- 1. 全天数据分析 ---
|
| 119 |
-
st.header("全天排片效率分析")
|
| 120 |
-
|
| 121 |
full_day_analysis = process_and_analyze_data(df.copy())
|
| 122 |
-
|
| 123 |
if not full_day_analysis.empty:
|
| 124 |
table_height = (len(full_day_analysis) + 1) * 35 + 3
|
| 125 |
st.dataframe(
|
| 126 |
full_day_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
| 127 |
-
height=table_height,
|
| 128 |
-
use_container_width=True,
|
| 129 |
-
hide_index=True
|
| 130 |
-
)
|
| 131 |
-
else:
|
| 132 |
-
st.warning("全天数据不足,无法生成分析报告。")
|
| 133 |
-
|
| 134 |
-
# --- 2. 黄金时段数据分析 ---
|
| 135 |
-
st.header("黄金时段排片效率分析 (14:00-21:00)")
|
| 136 |
-
|
| 137 |
-
start_time = pd.to_datetime('14:00:00').time()
|
| 138 |
-
end_time = pd.to_datetime('21:00:00').time()
|
| 139 |
-
prime_time_df = df[df['放映时间'].between(start_time, end_time)]
|
| 140 |
|
|
|
|
|
|
|
|
|
|
| 141 |
prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
|
| 142 |
-
|
| 143 |
if not prime_time_analysis.empty:
|
| 144 |
table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
|
| 145 |
st.dataframe(
|
| 146 |
prime_time_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
| 147 |
-
height=table_height_prime,
|
| 148 |
-
use_container_width=True,
|
| 149 |
-
hide_index = True
|
| 150 |
-
)
|
| 151 |
-
else:
|
| 152 |
-
st.warning("黄金时段内没有有效场次数据,无法生成分析报告。")
|
| 153 |
-
|
| 154 |
-
# --- 3. 一键复制影片列表 ---
|
| 155 |
-
if not full_day_analysis.empty:
|
| 156 |
-
st.header("复制当日影片列表")
|
| 157 |
|
|
|
|
|
|
|
| 158 |
movie_titles = full_day_analysis['影片'].tolist()
|
| 159 |
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
|
| 160 |
-
|
| 161 |
st.code(formatted_titles, language='text')
|
| 162 |
|
| 163 |
except Exception as e:
|
| 164 |
st.error(f"处理文件时出错: {e}")
|
| 165 |
-
st.warning("请确保上传的文件是'影片映出日累计报表.xlsx',并且格式正确。")
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
+
import requests
|
| 5 |
+
import time
|
| 6 |
+
from collections import defaultdict
|
| 7 |
|
| 8 |
+
# Set page layout to wide mode and set page title
|
| 9 |
+
st.set_page_config(layout="wide", page_title="影城效率与内容分析工具")
|
| 10 |
|
| 11 |
|
| 12 |
+
# --- Efficiency Analysis Functions ---
|
| 13 |
def clean_movie_title(title):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
if not isinstance(title, str):
|
| 15 |
return title
|
|
|
|
| 16 |
return title.split(' ', 1)[0]
|
| 17 |
|
| 18 |
|
| 19 |
def style_efficiency(row):
|
| 20 |
+
green = 'background-color: #E6F5E6;' # Light Green
|
| 21 |
+
red = 'background-color: #FFE5E5;' # Light Red
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
default = ''
|
|
|
|
|
|
|
| 23 |
styles = [default] * len(row)
|
|
|
|
|
|
|
| 24 |
seat_efficiency = row.get('座次效率', 0)
|
| 25 |
session_efficiency = row.get('场次效率', 0)
|
|
|
|
|
|
|
| 26 |
if seat_efficiency > 1.5 or session_efficiency > 1.5:
|
| 27 |
styles = [green] * len(row)
|
| 28 |
elif seat_efficiency < 0.5 or session_efficiency < 0.5:
|
| 29 |
styles = [red] * len(row)
|
|
|
|
| 30 |
return styles
|
| 31 |
|
| 32 |
|
| 33 |
def process_and_analyze_data(df):
|
|
|
|
|
|
|
|
|
|
| 34 |
if df.empty:
|
| 35 |
return pd.DataFrame()
|
|
|
|
| 36 |
analysis_df = df.groupby('影片名称_清理后').agg(
|
| 37 |
座位数=('座位数', 'sum'),
|
| 38 |
场次=('影片名称_清理后', 'size'),
|
|
|
|
| 40 |
人次=('总人次', 'sum')
|
| 41 |
).reset_index()
|
| 42 |
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
|
|
|
|
| 43 |
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
|
|
|
|
| 44 |
total_seats = analysis_df['座位数'].sum()
|
| 45 |
total_sessions = analysis_df['场次'].sum()
|
| 46 |
total_revenue = analysis_df['票房'].sum()
|
|
|
|
| 47 |
analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
|
| 48 |
analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
|
| 49 |
analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
|
| 50 |
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
|
| 51 |
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
|
| 52 |
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
|
| 53 |
+
final_columns = ['影片', '座位数', '场次', '票房', '人次', '均价', '座次比', '场次比', '票房比', '座次效率',
|
| 54 |
+
'场次效率']
|
|
|
|
|
|
|
|
|
|
| 55 |
analysis_df = analysis_df[final_columns]
|
|
|
|
| 56 |
return analysis_df
|
| 57 |
|
| 58 |
|
| 59 |
+
# --- New Feature: Server Movie Content Inquiry ---
|
| 60 |
+
@st.cache_data(show_spinner=False)
|
| 61 |
+
def fetch_and_process_server_movies(priority_movie_titles=None):
|
| 62 |
+
if priority_movie_titles is None:
|
| 63 |
+
priority_movie_titles = []
|
| 64 |
+
|
| 65 |
+
# 1. Get Token
|
| 66 |
+
token_headers = {
|
| 67 |
+
'Host': 'oa.hengdianfilm.com:7080', 'Content-Type': 'application/json',
|
| 68 |
+
'Origin': 'http://115.239.253.233:7080', 'Connection': 'keep-alive',
|
| 69 |
+
'Accept': 'application/json, text/javascript, */*; q=0.01',
|
| 70 |
+
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 18_5_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/138.0.7204.156 Mobile/15E148 Safari/604.1',
|
| 71 |
+
'Accept-Language': 'zh-CN,zh-Hans;q=0.9',
|
| 72 |
+
}
|
| 73 |
+
token_json_data = {'appId': 'hd', 'appSecret': 'ad761f8578cc6170', 'timeStamp': int(time.time() * 1000)}
|
| 74 |
+
token_url = 'http://oa.hengdianfilm.com:7080/cinema-api/admin/generateToken?token=hd&murl=?token=hd&murl=ticket=-1495916529737643774'
|
| 75 |
+
response = requests.post(token_url, headers=token_headers, json=token_json_data, timeout=10)
|
| 76 |
+
response.raise_for_status()
|
| 77 |
+
token_data = response.json()
|
| 78 |
+
if token_data.get('error_code') != '0000':
|
| 79 |
+
raise Exception(f"获取Token失败: {token_data.get('error_desc')}")
|
| 80 |
+
auth_token = token_data['param']
|
| 81 |
+
|
| 82 |
+
# 2. Fetch movie list (with pagination and delay)
|
| 83 |
+
all_movies = []
|
| 84 |
+
page_index = 1
|
| 85 |
+
while True:
|
| 86 |
+
list_headers = {
|
| 87 |
+
'Accept': 'application/json, text/javascript, */*; q=0.01',
|
| 88 |
+
'Content-Type': 'application/json; charset=UTF-8',
|
| 89 |
+
'Origin': 'http://115.239.253.233:7080', 'Proxy-Connection': 'keep-alive', 'Token': auth_token,
|
| 90 |
+
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
|
| 91 |
+
'X-SESSIONID': 'PQ0J3K85GJEDVYIGZE1KEG1K80USDAP4',
|
| 92 |
+
}
|
| 93 |
+
list_params = {'token': 'hd', 'murl': 'ContentMovie'}
|
| 94 |
+
list_json_data = {'THEATER_ID': 38205954, 'SOURCE': 'SERVER', 'ASSERT_TYPE': 2, 'PAGE_CAPACITY': 20,
|
| 95 |
+
'PAGE_INDEX': page_index}
|
| 96 |
+
list_url = 'http://oa.hengdianfilm.com:7080/cinema-api/cinema/server/dcp/list'
|
| 97 |
+
response = requests.post(list_url, params=list_params, headers=list_headers, json=list_json_data, verify=False)
|
| 98 |
+
response.raise_for_status()
|
| 99 |
+
movie_data = response.json()
|
| 100 |
+
if movie_data.get("RSPCD") != "000000":
|
| 101 |
+
raise Exception(f"获取影片列表失败: {movie_data.get('RSPMSG')}")
|
| 102 |
+
body = movie_data.get("BODY", {})
|
| 103 |
+
movies_on_page = body.get("LIST", [])
|
| 104 |
+
if not movies_on_page: break
|
| 105 |
+
all_movies.extend(movies_on_page)
|
| 106 |
+
if len(all_movies) >= body.get("COUNT", 0): break
|
| 107 |
+
page_index += 1
|
| 108 |
+
time.sleep(1) # Add 1-second delay between requests
|
| 109 |
+
|
| 110 |
+
# 3. Process data into a central, detailed structure
|
| 111 |
+
movie_details = {}
|
| 112 |
+
for movie in all_movies:
|
| 113 |
+
content_name = movie.get('CONTENT_NAME')
|
| 114 |
+
if not content_name: continue
|
| 115 |
+
movie_details[content_name] = {
|
| 116 |
+
'assert_name': movie.get('ASSERT_NAME'),
|
| 117 |
+
'halls': sorted([h.get('HALL_NAME') for h in movie.get('HALL_INFO', [])])
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
# 4. Prepare data for the two display views
|
| 121 |
+
# For View by Hall
|
| 122 |
+
by_hall = defaultdict(list)
|
| 123 |
+
for content_name, details in movie_details.items():
|
| 124 |
+
for hall_name in details['halls']:
|
| 125 |
+
by_hall[hall_name].append({'content_name': content_name, 'details': details})
|
| 126 |
+
|
| 127 |
+
for hall_name in by_hall:
|
| 128 |
+
by_hall[hall_name].sort(key=lambda item: (
|
| 129 |
+
item['details']['assert_name'] is None or item['details']['assert_name'] == '',
|
| 130 |
+
item['details']['assert_name'] or item['content_name']
|
| 131 |
+
))
|
| 132 |
+
|
| 133 |
+
# For View by Movie
|
| 134 |
+
view2_list = []
|
| 135 |
+
for content_name, details in movie_details.items():
|
| 136 |
+
if details.get('assert_name'):
|
| 137 |
+
view2_list.append({
|
| 138 |
+
'assert_name': details['assert_name'],
|
| 139 |
+
'content_name': content_name,
|
| 140 |
+
'halls': details['halls']
|
| 141 |
+
})
|
| 142 |
+
|
| 143 |
+
priority_list = [item for item in view2_list if
|
| 144 |
+
any(p_title in item['assert_name'] for p_title in priority_movie_titles)]
|
| 145 |
+
other_list_items = [item for item in view2_list if item not in priority_list]
|
| 146 |
+
|
| 147 |
+
priority_list.sort(key=lambda x: x['assert_name'])
|
| 148 |
+
other_list_items.sort(key=lambda x: x['assert_name'])
|
| 149 |
+
|
| 150 |
+
final_sorted_list = priority_list + other_list_items
|
| 151 |
+
|
| 152 |
+
return dict(sorted(by_hall.items())), final_sorted_list
|
| 153 |
+
|
| 154 |
|
| 155 |
+
def get_circled_number(hall_name):
|
| 156 |
+
mapping = {'1': '①', '2': '②', '3': '③', '4': '④', '5': '⑤', '6': '⑥', '7': '⑦', '8': '⑧', '9': '⑨'}
|
| 157 |
+
num_str = ''.join(filter(str.isdigit, hall_name))
|
| 158 |
+
return mapping.get(num_str, '')
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# --- Streamlit Main UI ---
|
| 162 |
+
st.title('影城排片效率与内容分析工具')
|
| 163 |
+
st.write("上传 `影片映出日累计报表.xlsx` 进行效率分析,或点击下方按钮查询 TMS 服务器影片内容。")
|
| 164 |
|
| 165 |
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
|
| 166 |
+
full_day_analysis = pd.DataFrame()
|
| 167 |
|
| 168 |
if uploaded_file is not None:
|
| 169 |
try:
|
| 170 |
+
# Efficiency analysis part
|
| 171 |
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
|
| 172 |
+
df.rename(columns={0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'}, inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次']
|
| 174 |
df = df[required_cols]
|
| 175 |
df.dropna(subset=['影片名称', '放映时间'], inplace=True)
|
|
|
|
| 176 |
for col in ['座位数', '总收入', '总人次']:
|
| 177 |
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
|
|
|
|
| 178 |
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
|
| 179 |
df.dropna(subset=['放映时间'], inplace=True)
|
|
|
|
| 180 |
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
|
| 181 |
+
st.toast("文件上传成功,效率分析已生成!", icon="🎉")
|
| 182 |
+
format_config = {'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}', '票房': '{:,.2f}', '均价': '{:.2f}',
|
| 183 |
+
'座次比': '{:.2%}', '场次比': '{:.2%}', '票房比': '{:.2%}', '座次效率': '{:.2f}',
|
| 184 |
+
'场次效率': '{:.2f}'}
|
| 185 |
|
| 186 |
+
st.markdown("### 全天排片效率分析")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
full_day_analysis = process_and_analyze_data(df.copy())
|
|
|
|
| 188 |
if not full_day_analysis.empty:
|
| 189 |
table_height = (len(full_day_analysis) + 1) * 35 + 3
|
| 190 |
st.dataframe(
|
| 191 |
full_day_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
| 192 |
+
height=table_height, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
st.markdown("#### 黄金时段排片效率分析 (14:00-21:00)")
|
| 195 |
+
start_time, end_time = pd.to_datetime('14:00:00').time(), pd.to_datetime('21:00:00').time()
|
| 196 |
+
prime_time_df = df[df['放映时间'].between(start_time, end_time)]
|
| 197 |
prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
|
|
|
|
| 198 |
if not prime_time_analysis.empty:
|
| 199 |
table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
|
| 200 |
st.dataframe(
|
| 201 |
prime_time_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
| 202 |
+
height=table_height_prime, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
if not full_day_analysis.empty:
|
| 205 |
+
st.markdown("##### 复制当日排片列表")
|
| 206 |
movie_titles = full_day_analysis['影片'].tolist()
|
| 207 |
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
|
|
|
|
| 208 |
st.code(formatted_titles, language='text')
|
| 209 |
|
| 210 |
except Exception as e:
|
| 211 |
st.error(f"处理文件时出错: {e}")
|
|
|
|
| 212 |
|
| 213 |
+
|
| 214 |
+
# --- New Feature Module ---
|
| 215 |
+
st.markdown("### TMS 服务器影片内容查询")
|
| 216 |
+
if st.button('点击查询 TMS 服务器'):
|
| 217 |
+
with st.spinner("正在从 TMS 服务器获取数据中,请稍候..."):
|
| 218 |
+
try:
|
| 219 |
+
priority_titles = full_day_analysis['影片'].tolist() if not full_day_analysis.empty else []
|
| 220 |
+
halls_data, movie_list_sorted = fetch_and_process_server_movies(priority_titles)
|
| 221 |
+
st.toast("TMS 服务器数据获取成功!", icon="🎉")
|
| 222 |
+
|
| 223 |
+
# --- View by Movie (in a single expander) ---
|
| 224 |
+
st.markdown("#### 按影片查看所在影厅")
|
| 225 |
+
with st.expander("点击展开 / 折叠影片列表", expanded = True):
|
| 226 |
+
for item in movie_list_sorted:
|
| 227 |
+
circled_halls = " ".join(sorted([get_circled_number(h) for h in item['halls']]))
|
| 228 |
+
st.markdown(f"**{item['assert_name']}** - {circled_halls} - `{item['content_name']}`")
|
| 229 |
+
|
| 230 |
+
# --- View by Hall ---
|
| 231 |
+
st.markdown("#### 按影厅查看影片内容")
|
| 232 |
+
hall_tabs = st.tabs(halls_data.keys())
|
| 233 |
+
for tab, hall_name in zip(hall_tabs, halls_data.keys()):
|
| 234 |
+
with tab:
|
| 235 |
+
for movie_item in halls_data[hall_name]:
|
| 236 |
+
details = movie_item['details']
|
| 237 |
+
content_name = movie_item['content_name']
|
| 238 |
+
assert_name = details['assert_name']
|
| 239 |
+
|
| 240 |
+
display_name = assert_name if assert_name else content_name
|
| 241 |
+
circled_halls = " ".join(sorted([get_circled_number(h) for h in details['halls']]))
|
| 242 |
+
|
| 243 |
+
st.markdown(f"- **{display_name}** - {circled_halls} - `{content_name}`")
|
| 244 |
+
|
| 245 |
+
except Exception as e:
|
| 246 |
+
st.error(f"查询服务器时出错: {e}")
|