Spaces:
Running
Running
| import os | |
| import torch | |
| from torch import nn | |
| from diffusers import UniPCMultistepScheduler, AutoencoderKL | |
| from safetensors.torch import load_file | |
| from pipeline.pipeline_controlnext import StableDiffusionXLControlNeXtPipeline | |
| from models.unet import UNet2DConditionModel, UNET_CONFIG | |
| from models.controlnet import ControlNetModel | |
| from . import utils | |
| def get_pipeline( | |
| pretrained_model_name_or_path, | |
| unet_model_name_or_path, | |
| controlnet_model_name_or_path, | |
| vae_model_name_or_path=None, | |
| lora_path=None, | |
| load_weight_increasement=False, | |
| enable_xformers_memory_efficient_attention=False, | |
| revision=None, | |
| variant=None, | |
| hf_cache_dir=None, | |
| use_safetensors=True, | |
| device=None, | |
| ): | |
| pipeline_init_kwargs = {} | |
| if controlnet_model_name_or_path is not None: | |
| print(f"loading controlnet from {controlnet_model_name_or_path}") | |
| controlnet = ControlNetModel() | |
| if controlnet_model_name_or_path is not None: | |
| utils.load_safetensors(controlnet, controlnet_model_name_or_path) | |
| else: | |
| controlnet.scale = nn.Parameter(torch.tensor(0.), requires_grad=False) | |
| controlnet.to(device, dtype=torch.float32) | |
| pipeline_init_kwargs["controlnet"] = controlnet | |
| utils.log_model_info(controlnet, "controlnext") | |
| else: | |
| print(f"no controlnet") | |
| print(f"loading unet from {pretrained_model_name_or_path}") | |
| if os.path.isfile(pretrained_model_name_or_path): | |
| # load unet from local checkpoint | |
| unet_sd = load_file(pretrained_model_name_or_path) if pretrained_model_name_or_path.endswith(".safetensors") else torch.load(pretrained_model_name_or_path) | |
| unet_sd = utils.extract_unet_state_dict(unet_sd) | |
| unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd) | |
| unet = UNet2DConditionModel.from_config(UNET_CONFIG) | |
| unet.load_state_dict(unet_sd, strict=True) | |
| else: | |
| from huggingface_hub import hf_hub_download | |
| filename = "diffusion_pytorch_model" | |
| if variant == "fp16": | |
| filename += ".fp16" | |
| if use_safetensors: | |
| filename += ".safetensors" | |
| else: | |
| filename += ".pt" | |
| unet_file = hf_hub_download( | |
| repo_id=pretrained_model_name_or_path, | |
| filename="unet" + '/' + filename, | |
| cache_dir=hf_cache_dir, | |
| ) | |
| unet_sd = load_file(unet_file) if unet_file.endswith(".safetensors") else torch.load(pretrained_model_name_or_path) | |
| unet_sd = utils.extract_unet_state_dict(unet_sd) | |
| unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd) | |
| unet = UNet2DConditionModel.from_config(UNET_CONFIG) | |
| unet.load_state_dict(unet_sd, strict=True) | |
| unet = unet.to(dtype=torch.float16) | |
| utils.log_model_info(unet, "unet") | |
| if unet_model_name_or_path is not None: | |
| print(f"loading controlnext unet from {unet_model_name_or_path}") | |
| controlnext_unet_sd = load_file(unet_model_name_or_path) | |
| controlnext_unet_sd = utils.convert_to_controlnext_unet_state_dict(controlnext_unet_sd) | |
| unet_sd = unet.state_dict() | |
| assert all( | |
| k in unet_sd for k in controlnext_unet_sd), \ | |
| f"controlnext unet state dict is not compatible with unet state dict, missing keys: {set(controlnext_unet_sd.keys()) - set(unet_sd.keys())}, extra keys: {set(unet_sd.keys()) - set(controlnext_unet_sd.keys())}" | |
| if load_weight_increasement: | |
| print("loading weight increasement") | |
| for k in controlnext_unet_sd.keys(): | |
| controlnext_unet_sd[k] = controlnext_unet_sd[k] + unet_sd[k] | |
| unet.load_state_dict(controlnext_unet_sd, strict=False) | |
| utils.log_model_info(controlnext_unet_sd, "controlnext unet") | |
| pipeline_init_kwargs["unet"] = unet | |
| if vae_model_name_or_path is not None: | |
| print(f"loading vae from {vae_model_name_or_path}") | |
| vae = AutoencoderKL.from_pretrained(vae_model_name_or_path, cache_dir=hf_cache_dir, torch_dtype=torch.float16).to(device) | |
| pipeline_init_kwargs["vae"] = vae | |
| print(f"loading pipeline from {pretrained_model_name_or_path}") | |
| if os.path.isfile(pretrained_model_name_or_path): | |
| pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_single_file( | |
| pretrained_model_name_or_path, | |
| use_safetensors=pretrained_model_name_or_path.endswith(".safetensors"), | |
| local_files_only=True, | |
| cache_dir=hf_cache_dir, | |
| **pipeline_init_kwargs, | |
| ) | |
| else: | |
| pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_pretrained( | |
| pretrained_model_name_or_path, | |
| revision=revision, | |
| variant=variant, | |
| use_safetensors=use_safetensors, | |
| cache_dir=hf_cache_dir, | |
| **pipeline_init_kwargs, | |
| ) | |
| pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config) | |
| pipeline.set_progress_bar_config() | |
| pipeline = pipeline.to(device, dtype=torch.float16 if torch.cuda.is_available() else torch.float32) | |
| if lora_path is not None: | |
| pipeline.load_lora_weights(lora_path) | |
| if enable_xformers_memory_efficient_attention and torch.cuda.is_available(): | |
| pipeline.enable_xformers_memory_efficient_attention() | |
| return pipeline | |
| def get_scheduler( | |
| scheduler_name, | |
| scheduler_config, | |
| ): | |
| if scheduler_name == 'Euler A': | |
| from diffusers.schedulers import EulerAncestralDiscreteScheduler | |
| scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) | |
| elif scheduler_name == 'UniPC': | |
| from diffusers.schedulers import UniPCMultistepScheduler | |
| scheduler = UniPCMultistepScheduler.from_config(scheduler_config) | |
| elif scheduler_name == 'Euler': | |
| from diffusers.schedulers import EulerDiscreteScheduler | |
| scheduler = EulerDiscreteScheduler.from_config(scheduler_config) | |
| elif scheduler_name == 'DDIM': | |
| from diffusers.schedulers import DDIMScheduler | |
| scheduler = DDIMScheduler.from_config(scheduler_config) | |
| elif scheduler_name == 'DDPM': | |
| from diffusers.schedulers import DDPMScheduler | |
| scheduler = DDPMScheduler.from_config(scheduler_config) | |
| else: | |
| raise ValueError(f"Unknown scheduler: {scheduler_name}") | |
| return scheduler | |