Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	test
Browse files- .gitignore +162 -0
- README.md +0 -2
- app.py +161 -136
- models/controlnet.py +495 -0
- models/unet.py +1387 -0
- pipeline/pipeline_controlnext.py +1378 -0
- utils/preprocess.py +38 -0
- utils/tools.py +146 -0
- utils/utils.py +225 -0
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,162 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Byte-compiled / optimized / DLL files
         | 
| 2 | 
            +
            __pycache__/
         | 
| 3 | 
            +
            *.py[cod]
         | 
| 4 | 
            +
            *$py.class
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # C extensions
         | 
| 7 | 
            +
            *.so
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Distribution / packaging
         | 
| 10 | 
            +
            .Python
         | 
| 11 | 
            +
            build/
         | 
| 12 | 
            +
            develop-eggs/
         | 
| 13 | 
            +
            dist/
         | 
| 14 | 
            +
            downloads/
         | 
| 15 | 
            +
            eggs/
         | 
| 16 | 
            +
            .eggs/
         | 
| 17 | 
            +
            lib/
         | 
| 18 | 
            +
            lib64/
         | 
| 19 | 
            +
            parts/
         | 
| 20 | 
            +
            sdist/
         | 
| 21 | 
            +
            var/
         | 
| 22 | 
            +
            wheels/
         | 
| 23 | 
            +
            share/python-wheels/
         | 
| 24 | 
            +
            *.egg-info/
         | 
| 25 | 
            +
            .installed.cfg
         | 
| 26 | 
            +
            *.egg
         | 
| 27 | 
            +
            MANIFEST
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            # PyInstaller
         | 
| 30 | 
            +
            #  Usually these files are written by a python script from a template
         | 
| 31 | 
            +
            #  before PyInstaller builds the exe, so as to inject date/other infos into it.
         | 
| 32 | 
            +
            *.manifest
         | 
| 33 | 
            +
            *.spec
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            # Installer logs
         | 
| 36 | 
            +
            pip-log.txt
         | 
| 37 | 
            +
            pip-delete-this-directory.txt
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            # Unit test / coverage reports
         | 
| 40 | 
            +
            htmlcov/
         | 
| 41 | 
            +
            .tox/
         | 
| 42 | 
            +
            .nox/
         | 
| 43 | 
            +
            .coverage
         | 
| 44 | 
            +
            .coverage.*
         | 
| 45 | 
            +
            .cache
         | 
| 46 | 
            +
            nosetests.xml
         | 
| 47 | 
            +
            coverage.xml
         | 
| 48 | 
            +
            *.cover
         | 
| 49 | 
            +
            *.py,cover
         | 
| 50 | 
            +
            .hypothesis/
         | 
| 51 | 
            +
            .pytest_cache/
         | 
| 52 | 
            +
            cover/
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            # Translations
         | 
| 55 | 
            +
            *.mo
         | 
| 56 | 
            +
            *.pot
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            # Django stuff:
         | 
| 59 | 
            +
            *.log
         | 
| 60 | 
            +
            local_settings.py
         | 
| 61 | 
            +
            db.sqlite3
         | 
| 62 | 
            +
            db.sqlite3-journal
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            # Flask stuff:
         | 
| 65 | 
            +
            instance/
         | 
| 66 | 
            +
            .webassets-cache
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            # Scrapy stuff:
         | 
| 69 | 
            +
            .scrapy
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            # Sphinx documentation
         | 
| 72 | 
            +
            docs/_build/
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            # PyBuilder
         | 
| 75 | 
            +
            .pybuilder/
         | 
| 76 | 
            +
            target/
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            # Jupyter Notebook
         | 
| 79 | 
            +
            .ipynb_checkpoints
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            # IPython
         | 
| 82 | 
            +
            profile_default/
         | 
| 83 | 
            +
            ipython_config.py
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            # pyenv
         | 
| 86 | 
            +
            #   For a library or package, you might want to ignore these files since the code is
         | 
| 87 | 
            +
            #   intended to run in multiple environments; otherwise, check them in:
         | 
| 88 | 
            +
            # .python-version
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            # pipenv
         | 
| 91 | 
            +
            #   According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
         | 
| 92 | 
            +
            #   However, in case of collaboration, if having platform-specific dependencies or dependencies
         | 
| 93 | 
            +
            #   having no cross-platform support, pipenv may install dependencies that don't work, or not
         | 
| 94 | 
            +
            #   install all needed dependencies.
         | 
| 95 | 
            +
            #Pipfile.lock
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            # poetry
         | 
| 98 | 
            +
            #   Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
         | 
| 99 | 
            +
            #   This is especially recommended for binary packages to ensure reproducibility, and is more
         | 
| 100 | 
            +
            #   commonly ignored for libraries.
         | 
| 101 | 
            +
            #   https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
         | 
| 102 | 
            +
            #poetry.lock
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            # pdm
         | 
| 105 | 
            +
            #   Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
         | 
| 106 | 
            +
            #pdm.lock
         | 
| 107 | 
            +
            #   pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
         | 
| 108 | 
            +
            #   in version control.
         | 
| 109 | 
            +
            #   https://pdm.fming.dev/latest/usage/project/#working-with-version-control
         | 
| 110 | 
            +
            .pdm.toml
         | 
| 111 | 
            +
            .pdm-python
         | 
| 112 | 
            +
            .pdm-build/
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
         | 
| 115 | 
            +
            __pypackages__/
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            # Celery stuff
         | 
| 118 | 
            +
            celerybeat-schedule
         | 
| 119 | 
            +
            celerybeat.pid
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            # SageMath parsed files
         | 
| 122 | 
            +
            *.sage.py
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            # Environments
         | 
| 125 | 
            +
            .env
         | 
| 126 | 
            +
            .venv
         | 
| 127 | 
            +
            env/
         | 
| 128 | 
            +
            venv/
         | 
| 129 | 
            +
            ENV/
         | 
| 130 | 
            +
            env.bak/
         | 
| 131 | 
            +
            venv.bak/
         | 
| 132 | 
            +
             | 
| 133 | 
            +
            # Spyder project settings
         | 
| 134 | 
            +
            .spyderproject
         | 
| 135 | 
            +
            .spyproject
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            # Rope project settings
         | 
| 138 | 
            +
            .ropeproject
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            # mkdocs documentation
         | 
| 141 | 
            +
            /site
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            # mypy
         | 
| 144 | 
            +
            .mypy_cache/
         | 
| 145 | 
            +
            .dmypy.json
         | 
| 146 | 
            +
            dmypy.json
         | 
| 147 | 
            +
             | 
| 148 | 
            +
            # Pyre type checker
         | 
| 149 | 
            +
            .pyre/
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            # pytype static type analyzer
         | 
| 152 | 
            +
            .pytype/
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            # Cython debug symbols
         | 
| 155 | 
            +
            cython_debug/
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            # PyCharm
         | 
| 158 | 
            +
            #  JetBrains specific template is maintained in a separate JetBrains.gitignore that can
         | 
| 159 | 
            +
            #  be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
         | 
| 160 | 
            +
            #  and can be added to the global gitignore or merged into this file.  For a more nuclear
         | 
| 161 | 
            +
            #  option (not recommended) you can uncomment the following to ignore the entire idea folder.
         | 
| 162 | 
            +
            #.idea/
         | 
    	
        README.md
    CHANGED
    
    | @@ -9,5 +9,3 @@ app_file: app.py | |
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            license: apache-2.0
         | 
| 11 | 
             
            ---
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
|  | |
| 9 | 
             
            pinned: false
         | 
| 10 | 
             
            license: apache-2.0
         | 
| 11 | 
             
            ---
         | 
|  | |
|  | 
    	
        app.py
    CHANGED
    
    | @@ -1,146 +1,171 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            -
            import numpy as np
         | 
| 3 | 
            -
            import random
         | 
| 4 | 
            -
            from diffusers import DiffusionPipeline
         | 
| 5 | 
             
            import torch
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 6 |  | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
                 | 
| 12 | 
            -
                 | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
| 15 | 
            -
                pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
         | 
| 16 | 
            -
                pipe = pipe.to(device)
         | 
| 17 | 
            -
             | 
| 18 | 
            -
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 19 | 
            -
            MAX_IMAGE_SIZE = 1024
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
         | 
| 22 | 
            -
             | 
| 23 | 
            -
                if randomize_seed:
         | 
| 24 | 
            -
                    seed = random.randint(0, MAX_SEED)
         | 
| 25 | 
            -
                    
         | 
| 26 | 
            -
                generator = torch.Generator().manual_seed(seed)
         | 
| 27 | 
            -
                
         | 
| 28 | 
            -
                image = pipe(
         | 
| 29 | 
            -
                    prompt = prompt, 
         | 
| 30 | 
            -
                    negative_prompt = negative_prompt,
         | 
| 31 | 
            -
                    guidance_scale = guidance_scale, 
         | 
| 32 | 
            -
                    num_inference_steps = num_inference_steps, 
         | 
| 33 | 
            -
                    width = width, 
         | 
| 34 | 
            -
                    height = height,
         | 
| 35 | 
            -
                    generator = generator
         | 
| 36 | 
            -
                ).images[0] 
         | 
| 37 | 
            -
                
         | 
| 38 | 
            -
                return image
         | 
| 39 | 
            -
             | 
| 40 | 
            -
            examples = [
         | 
| 41 | 
            -
                "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
         | 
| 42 | 
            -
                "An astronaut riding a green horse",
         | 
| 43 | 
            -
                "A delicious ceviche cheesecake slice",
         | 
| 44 | 
            -
            ]
         | 
| 45 | 
            -
             | 
| 46 | 
            -
            css="""
         | 
| 47 | 
            -
            #col-container {
         | 
| 48 | 
            -
                margin: 0 auto;
         | 
| 49 | 
            -
                max-width: 520px;
         | 
| 50 | 
            -
            }
         | 
| 51 | 
            -
            """
         | 
| 52 | 
            -
             | 
| 53 | 
            -
            if torch.cuda.is_available():
         | 
| 54 | 
            -
                power_device = "GPU"
         | 
| 55 | 
            -
            else:
         | 
| 56 | 
            -
                power_device = "CPU"
         | 
| 57 | 
            -
             | 
| 58 | 
            -
            with gr.Blocks(css=css) as demo:
         | 
| 59 | 
            -
                
         | 
| 60 | 
            -
                with gr.Column(elem_id="col-container"):
         | 
| 61 | 
             
                    gr.Markdown(f"""
         | 
| 62 | 
            -
                    #  | 
| 63 | 
            -
                    Currently running on {power_device}.
         | 
| 64 | 
             
                    """)
         | 
| 65 | 
            -
                    
         | 
| 66 | 
             
                    with gr.Row():
         | 
| 67 | 
            -
                        
         | 
| 68 | 
            -
             | 
| 69 | 
            -
                             | 
| 70 | 
            -
             | 
| 71 | 
            -
                             | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
                             | 
| 85 | 
            -
             | 
| 86 | 
            -
             | 
| 87 | 
            -
             | 
| 88 | 
            -
             | 
| 89 | 
            -
             | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
| 92 | 
            -
             | 
| 93 | 
            -
             | 
| 94 | 
            -
                             | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
| 99 | 
            -
             | 
| 100 | 
            -
             | 
| 101 | 
            -
             | 
| 102 | 
            -
             | 
| 103 | 
            -
             | 
| 104 | 
            -
                                 | 
| 105 | 
            -
                                 | 
| 106 | 
            -
             | 
| 107 | 
            -
                             | 
| 108 | 
            -
             | 
| 109 | 
            -
             | 
| 110 | 
            -
                                 | 
| 111 | 
            -
                                 | 
| 112 | 
            -
                                 | 
| 113 | 
            -
                                 | 
| 114 | 
            -
                                 | 
| 115 | 
            -
                            )
         | 
| 116 | 
            -
                        
         | 
| 117 | 
            -
                        with gr.Row():
         | 
| 118 | 
            -
                            
         | 
| 119 | 
            -
                            guidance_scale = gr.Slider(
         | 
| 120 | 
            -
                                label="Guidance scale",
         | 
| 121 | 
            -
                                minimum=0.0,
         | 
| 122 | 
            -
                                maximum=10.0,
         | 
| 123 | 
            -
                                step=0.1,
         | 
| 124 | 
            -
                                value=0.0,
         | 
| 125 | 
            -
                            )
         | 
| 126 | 
            -
                            
         | 
| 127 | 
            -
                            num_inference_steps = gr.Slider(
         | 
| 128 | 
            -
                                label="Number of inference steps",
         | 
| 129 | 
            -
                                minimum=1,
         | 
| 130 | 
            -
                                maximum=12,
         | 
| 131 | 
            -
                                step=1,
         | 
| 132 | 
            -
                                value=2,
         | 
| 133 | 
             
                            )
         | 
| 134 | 
            -
             | 
| 135 | 
            -
                     | 
| 136 | 
            -
                         | 
| 137 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 138 | 
             
                    )
         | 
| 139 |  | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
             | 
| 143 | 
            -
             | 
| 144 | 
            -
             | 
|  | |
|  | |
|  | |
| 145 |  | 
| 146 | 
            -
             | 
|  | |
|  | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
|  | |
|  | |
|  | |
| 2 | 
             
            import torch
         | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 5 | 
            +
            from utils import utils, tools, preprocess
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # BASE_MODEL_PATH = "stablediffusionapi/neta-art-xl-v2"
         | 
| 8 | 
            +
            VAE_PATH = "madebyollin/sdxl-vae-fp16-fix"
         | 
| 9 | 
            +
            REPO_ID = "Pbihao/ControlNeXt"
         | 
| 10 | 
            +
            UNET_FILENAME = "ControlAny-SDXL/anime_canny/unet.safetensors"
         | 
| 11 | 
            +
            CONTROLNET_FILENAME = "ControlAny-SDXL/anime_canny/controlnet.safetensors"
         | 
| 12 | 
            +
            CACHE_DIR = None
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            def ui():
         | 
| 16 | 
            +
                device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 17 | 
            +
                model_file = hf_hub_download(
         | 
| 18 | 
            +
                    repo_id='Lykon/AAM_XL_AnimeMix',
         | 
| 19 | 
            +
                    filename='AAM_XL_Anime_Mix.safetensors',
         | 
| 20 | 
            +
                    cache_dir=CACHE_DIR,
         | 
| 21 | 
            +
                )
         | 
| 22 | 
            +
                unet_file = hf_hub_download(
         | 
| 23 | 
            +
                    repo_id=REPO_ID,
         | 
| 24 | 
            +
                    filename=UNET_FILENAME,
         | 
| 25 | 
            +
                    cache_dir=CACHE_DIR,
         | 
| 26 | 
            +
                )
         | 
| 27 | 
            +
                controlnet_file = hf_hub_download(
         | 
| 28 | 
            +
                    repo_id=REPO_ID,
         | 
| 29 | 
            +
                    filename=CONTROLNET_FILENAME,
         | 
| 30 | 
            +
                    cache_dir=CACHE_DIR,
         | 
| 31 | 
            +
                )
         | 
| 32 | 
            +
                pipeline = tools.get_pipeline(
         | 
| 33 | 
            +
                    pretrained_model_name_or_path=model_file,
         | 
| 34 | 
            +
                    unet_model_name_or_path=unet_file,
         | 
| 35 | 
            +
                    controlnet_model_name_or_path=controlnet_file,
         | 
| 36 | 
            +
                    vae_model_name_or_path=VAE_PATH,
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    load_weight_increasement=True,
         | 
| 39 | 
            +
                    device=device,
         | 
| 40 | 
            +
                    hf_cache_dir=CACHE_DIR,
         | 
| 41 | 
            +
                    use_safetensors=True,
         | 
| 42 | 
            +
                    enable_xformers_memory_efficient_attention=True,
         | 
| 43 | 
            +
                )
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                preprocessors = ['canny']
         | 
| 46 | 
            +
                schedulers = ['Euler A', 'UniPC', 'Euler', 'DDIM', 'DDPM']
         | 
| 47 |  | 
| 48 | 
            +
                css = """
         | 
| 49 | 
            +
                #col-container {
         | 
| 50 | 
            +
                    margin: 0 auto;
         | 
| 51 | 
            +
                    max-width: 520px;
         | 
| 52 | 
            +
                }
         | 
| 53 | 
            +
                """
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                with gr.Blocks(css=css) as demo:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 56 | 
             
                    gr.Markdown(f"""
         | 
| 57 | 
            +
                    # [ControlNeXt](https://github.com/dvlab-research/ControlNeXt) Official Demo
         | 
|  | |
| 58 | 
             
                    """)
         | 
|  | |
| 59 | 
             
                    with gr.Row():
         | 
| 60 | 
            +
                        with gr.Column(scale=9):
         | 
| 61 | 
            +
                            prompt = gr.Textbox(lines=3, placeholder='prompt', container=False)
         | 
| 62 | 
            +
                            negative_prompt = gr.Textbox(lines=3, placeholder='negative prompt', container=False)
         | 
| 63 | 
            +
                        with gr.Column(scale=1):
         | 
| 64 | 
            +
                            generate_button = gr.Button("Generate", variant='primary', min_width=96)
         | 
| 65 | 
            +
                    with gr.Row():
         | 
| 66 | 
            +
                        with gr.Column(scale=1):
         | 
| 67 | 
            +
                            with gr.Row():
         | 
| 68 | 
            +
                                control_image = gr.Image(
         | 
| 69 | 
            +
                                    value=None,
         | 
| 70 | 
            +
                                    label='Condition',
         | 
| 71 | 
            +
                                    sources=['upload'],
         | 
| 72 | 
            +
                                    type='pil',
         | 
| 73 | 
            +
                                    height=512,
         | 
| 74 | 
            +
                                    show_download_button=True,
         | 
| 75 | 
            +
                                    show_share_button=True,
         | 
| 76 | 
            +
                                )
         | 
| 77 | 
            +
                            with gr.Row():
         | 
| 78 | 
            +
                                scheduler = gr.Dropdown(
         | 
| 79 | 
            +
                                    label='Scheduler',
         | 
| 80 | 
            +
                                    choices=schedulers,
         | 
| 81 | 
            +
                                    value='Euler A',
         | 
| 82 | 
            +
                                    multiselect=False,
         | 
| 83 | 
            +
                                    allow_custom_value=False,
         | 
| 84 | 
            +
                                    filterable=True,
         | 
| 85 | 
            +
                                )
         | 
| 86 | 
            +
                                num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=20, label='Steps')
         | 
| 87 | 
            +
                            with gr.Row():
         | 
| 88 | 
            +
                                cfg_scale = gr.Slider(minimum=1, maximum=30, step=1, value=7.5, label='CFG Scale')
         | 
| 89 | 
            +
                                controlnet_scale = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label='ControlNet Scale')
         | 
| 90 | 
            +
                            with gr.Row():
         | 
| 91 | 
            +
                                seed = gr.Number(label='Seed', step=1, precision=0, value=-1)
         | 
| 92 | 
            +
                            with gr.Row():
         | 
| 93 | 
            +
                                processor = gr.Dropdown(
         | 
| 94 | 
            +
                                    label='Image Preprocessor',
         | 
| 95 | 
            +
                                    choices=preprocessors,
         | 
| 96 | 
            +
                                    value='canny',
         | 
| 97 | 
            +
                                )
         | 
| 98 | 
            +
                                process_button = gr.Button("Process", variant='primary', min_width=96, scale=0)
         | 
| 99 | 
            +
                        with gr.Column(scale=1):
         | 
| 100 | 
            +
                            output = gr.Gallery(
         | 
| 101 | 
            +
                                label='Output',
         | 
| 102 | 
            +
                                value=None,
         | 
| 103 | 
            +
                                object_fit='scale-down',
         | 
| 104 | 
            +
                                columns=4,
         | 
| 105 | 
            +
                                height=512,
         | 
| 106 | 
            +
                                show_download_button=True,
         | 
| 107 | 
            +
                                show_share_button=True,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 108 | 
             
                            )
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    def generate(
         | 
| 111 | 
            +
                        prompt,
         | 
| 112 | 
            +
                        control_image,
         | 
| 113 | 
            +
                        negative_prompt,
         | 
| 114 | 
            +
                        cfg_scale,
         | 
| 115 | 
            +
                        controlnet_scale,
         | 
| 116 | 
            +
                        num_inference_steps,
         | 
| 117 | 
            +
                        scheduler,
         | 
| 118 | 
            +
                        seed,
         | 
| 119 | 
            +
                    ):
         | 
| 120 | 
            +
                        pipeline.scheduler = tools.get_scheduler(scheduler, pipeline.scheduler.config)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                        generator = torch.Generator(device=device).manual_seed(max(0, min(seed, np.iinfo(np.int32).max))) if seed != -1 else None
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                        if control_image is None:
         | 
| 125 | 
            +
                            raise gr.Error('Please upload an image.')
         | 
| 126 | 
            +
                        width, height = utils.around_reso(control_image.width, control_image.height, reso=1024, max_width=2048, max_height=2048, divisible=32)
         | 
| 127 | 
            +
                        control_image = control_image.resize((width, height)).convert('RGB')
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                        with torch.autocast(device):
         | 
| 130 | 
            +
                            output_images = pipeline.__call__(
         | 
| 131 | 
            +
                                prompt=prompt,
         | 
| 132 | 
            +
                                negative_prompt=negative_prompt,
         | 
| 133 | 
            +
                                controlnet_image=control_image,
         | 
| 134 | 
            +
                                controlnet_scale=controlnet_scale,
         | 
| 135 | 
            +
                                width=width,
         | 
| 136 | 
            +
                                height=height,
         | 
| 137 | 
            +
                                generator=generator,
         | 
| 138 | 
            +
                                guidance_scale=cfg_scale,
         | 
| 139 | 
            +
                                num_inference_steps=num_inference_steps,
         | 
| 140 | 
            +
                            ).images
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                        return output_images
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    def process(
         | 
| 145 | 
            +
                        image,
         | 
| 146 | 
            +
                        processor,
         | 
| 147 | 
            +
                    ):
         | 
| 148 | 
            +
                        if image is None:
         | 
| 149 | 
            +
                            raise gr.Error('Please upload an image.')
         | 
| 150 | 
            +
                        processor = preprocess.get_extractor(processor)
         | 
| 151 | 
            +
                        image = processor(image)
         | 
| 152 | 
            +
                        return image
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    generate_button.click(
         | 
| 155 | 
            +
                        fn=generate,
         | 
| 156 | 
            +
                        inputs=[prompt, control_image, negative_prompt, cfg_scale, controlnet_scale, num_inference_steps, scheduler, seed],
         | 
| 157 | 
            +
                        outputs=[output],
         | 
| 158 | 
             
                    )
         | 
| 159 |  | 
| 160 | 
            +
                    process_button.click(
         | 
| 161 | 
            +
                        fn=process,
         | 
| 162 | 
            +
                        inputs=[control_image, processor],
         | 
| 163 | 
            +
                        outputs=[control_image],
         | 
| 164 | 
            +
                    )
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                return demo
         | 
| 167 | 
            +
             | 
| 168 |  | 
| 169 | 
            +
            if __name__ == '__main__':
         | 
| 170 | 
            +
                demo = ui()
         | 
| 171 | 
            +
                demo.queue().launch()
         | 
    	
        models/controlnet.py
    ADDED
    
    | @@ -0,0 +1,495 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from dataclasses import dataclass
         | 
| 15 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
            from torch import nn
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 21 | 
            +
            from diffusers.utils import BaseOutput, logging
         | 
| 22 | 
            +
            from diffusers.models.embeddings import TimestepEmbedding, Timesteps
         | 
| 23 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 24 | 
            +
            from diffusers.models.resnet import Downsample2D, ResnetBlock2D
         | 
| 25 | 
            +
            from einops import rearrange
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            @dataclass
         | 
| 32 | 
            +
            class ControlNetOutput(BaseOutput):
         | 
| 33 | 
            +
                """
         | 
| 34 | 
            +
                The output of [`ControlNetModel`].
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                Args:
         | 
| 37 | 
            +
                    down_block_res_samples (`tuple[torch.Tensor]`):
         | 
| 38 | 
            +
                        A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
         | 
| 39 | 
            +
                        be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
         | 
| 40 | 
            +
                        used to condition the original UNet's downsampling activations.
         | 
| 41 | 
            +
                    mid_down_block_re_sample (`torch.Tensor`):
         | 
| 42 | 
            +
                        The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
         | 
| 43 | 
            +
                        `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
         | 
| 44 | 
            +
                        Output can be used to condition the original UNet's middle block activation.
         | 
| 45 | 
            +
                """
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                down_block_res_samples: Tuple[torch.Tensor]
         | 
| 48 | 
            +
                mid_block_res_sample: torch.Tensor
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            class Block2D(nn.Module):
         | 
| 52 | 
            +
                def __init__(
         | 
| 53 | 
            +
                    self,
         | 
| 54 | 
            +
                    in_channels: int,
         | 
| 55 | 
            +
                    out_channels: int,
         | 
| 56 | 
            +
                    temb_channels: int,
         | 
| 57 | 
            +
                    dropout: float = 0.0,
         | 
| 58 | 
            +
                    num_layers: int = 1,
         | 
| 59 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 60 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 61 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 62 | 
            +
                    resnet_groups: int = 32,
         | 
| 63 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 64 | 
            +
                    output_scale_factor: float = 1.0,
         | 
| 65 | 
            +
                    add_downsample: bool = True,
         | 
| 66 | 
            +
                    downsample_padding: int = 1,
         | 
| 67 | 
            +
                ):
         | 
| 68 | 
            +
                    super().__init__()
         | 
| 69 | 
            +
                    resnets = []
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    for i in range(num_layers):
         | 
| 72 | 
            +
                        in_channels = in_channels if i == 0 else out_channels
         | 
| 73 | 
            +
                        resnets.append(
         | 
| 74 | 
            +
                            ResnetBlock2D(
         | 
| 75 | 
            +
                                in_channels=in_channels,
         | 
| 76 | 
            +
                                out_channels=out_channels,
         | 
| 77 | 
            +
                                temb_channels=temb_channels,
         | 
| 78 | 
            +
                                eps=resnet_eps,
         | 
| 79 | 
            +
                                groups=resnet_groups,
         | 
| 80 | 
            +
                                dropout=dropout,
         | 
| 81 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 82 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 83 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 84 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 85 | 
            +
                            )
         | 
| 86 | 
            +
                        )
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    if add_downsample:
         | 
| 91 | 
            +
                        self.downsamplers = nn.ModuleList(
         | 
| 92 | 
            +
                            [
         | 
| 93 | 
            +
                                Downsample2D(
         | 
| 94 | 
            +
                                    out_channels,
         | 
| 95 | 
            +
                                    use_conv=True,
         | 
| 96 | 
            +
                                    out_channels=out_channels,
         | 
| 97 | 
            +
                                    padding=downsample_padding,
         | 
| 98 | 
            +
                                    name="op",
         | 
| 99 | 
            +
                                )
         | 
| 100 | 
            +
                            ]
         | 
| 101 | 
            +
                        )
         | 
| 102 | 
            +
                    else:
         | 
| 103 | 
            +
                        self.downsamplers = None
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    self.gradient_checkpointing = False
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                def forward(
         | 
| 108 | 
            +
                    self,
         | 
| 109 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 110 | 
            +
                    temb: Optional[torch.FloatTensor] = None,
         | 
| 111 | 
            +
                ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
         | 
| 112 | 
            +
                    output_states = ()
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    for resnet in zip(self.resnets):
         | 
| 115 | 
            +
                        hidden_states = resnet(hidden_states, temb)
         | 
| 116 | 
            +
                        output_states += (hidden_states,)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    if self.downsamplers is not None:
         | 
| 119 | 
            +
                        for downsampler in self.downsamplers:
         | 
| 120 | 
            +
                            hidden_states = downsampler(hidden_states)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                        output_states += (hidden_states,)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    return hidden_states, output_states
         | 
| 125 | 
            +
             | 
| 126 | 
            +
             | 
| 127 | 
            +
            class IdentityModule(nn.Module):
         | 
| 128 | 
            +
                def __init__(self):
         | 
| 129 | 
            +
                    super(IdentityModule, self).__init__()
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def forward(self, *args):
         | 
| 132 | 
            +
                    if len(args) > 0:
         | 
| 133 | 
            +
                        return args[0]
         | 
| 134 | 
            +
                    else:
         | 
| 135 | 
            +
                        return None
         | 
| 136 | 
            +
             | 
| 137 | 
            +
             | 
| 138 | 
            +
            class BasicBlock(nn.Module):
         | 
| 139 | 
            +
                def __init__(self,
         | 
| 140 | 
            +
                             in_channels: int,
         | 
| 141 | 
            +
                             out_channels: Optional[int] = None,
         | 
| 142 | 
            +
                             stride=1,
         | 
| 143 | 
            +
                             conv_shortcut: bool = False,
         | 
| 144 | 
            +
                             dropout: float = 0.0,
         | 
| 145 | 
            +
                             temb_channels: int = 512,
         | 
| 146 | 
            +
                             groups: int = 32,
         | 
| 147 | 
            +
                             groups_out: Optional[int] = None,
         | 
| 148 | 
            +
                             pre_norm: bool = True,
         | 
| 149 | 
            +
                             eps: float = 1e-6,
         | 
| 150 | 
            +
                             non_linearity: str = "swish",
         | 
| 151 | 
            +
                             skip_time_act: bool = False,
         | 
| 152 | 
            +
                             time_embedding_norm: str = "default",  # default, scale_shift, ada_group, spatial
         | 
| 153 | 
            +
                             kernel: Optional[torch.FloatTensor] = None,
         | 
| 154 | 
            +
                             output_scale_factor: float = 1.0,
         | 
| 155 | 
            +
                             use_in_shortcut: Optional[bool] = None,
         | 
| 156 | 
            +
                             up: bool = False,
         | 
| 157 | 
            +
                             down: bool = False,
         | 
| 158 | 
            +
                             conv_shortcut_bias: bool = True,
         | 
| 159 | 
            +
                             conv_2d_out_channels: Optional[int] = None,):
         | 
| 160 | 
            +
                    super(BasicBlock, self).__init__()
         | 
| 161 | 
            +
                    self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
         | 
| 162 | 
            +
                    self.bn1 = nn.BatchNorm2d(out_channels)
         | 
| 163 | 
            +
                    self.relu = nn.ReLU(inplace=True)
         | 
| 164 | 
            +
                    self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
         | 
| 165 | 
            +
                    self.bn2 = nn.BatchNorm2d(out_channels)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    self.downsample = None
         | 
| 168 | 
            +
                    if stride != 1 or in_channels != out_channels:
         | 
| 169 | 
            +
                        self.downsample = nn.Sequential(
         | 
| 170 | 
            +
                            nn.Conv2d(in_channels,
         | 
| 171 | 
            +
                                      out_channels,
         | 
| 172 | 
            +
                                      kernel_size=3 if stride != 1 else 1,
         | 
| 173 | 
            +
                                      stride=stride,
         | 
| 174 | 
            +
                                      padding=1 if stride != 1 else 0,
         | 
| 175 | 
            +
                                      bias=False),
         | 
| 176 | 
            +
                            nn.BatchNorm2d(out_channels)
         | 
| 177 | 
            +
                        )
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                def forward(self, x, *args):
         | 
| 180 | 
            +
                    residual = x
         | 
| 181 | 
            +
                    out = self.conv1(x)
         | 
| 182 | 
            +
                    out = self.bn1(out)
         | 
| 183 | 
            +
                    out = self.relu(out)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    out = self.conv2(out)
         | 
| 186 | 
            +
                    out = self.bn2(out)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    if self.downsample is not None:
         | 
| 189 | 
            +
                        residual = self.downsample(x)
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                    out += residual
         | 
| 192 | 
            +
                    out = self.relu(out)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    return out
         | 
| 195 | 
            +
             | 
| 196 | 
            +
             | 
| 197 | 
            +
            class Block2D(nn.Module):
         | 
| 198 | 
            +
                def __init__(
         | 
| 199 | 
            +
                    self,
         | 
| 200 | 
            +
                    in_channels: int,
         | 
| 201 | 
            +
                    out_channels: int,
         | 
| 202 | 
            +
                    temb_channels: int,
         | 
| 203 | 
            +
                    dropout: float = 0.0,
         | 
| 204 | 
            +
                    num_layers: int = 1,
         | 
| 205 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 206 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 207 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 208 | 
            +
                    resnet_groups: int = 32,
         | 
| 209 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 210 | 
            +
                    output_scale_factor: float = 1.0,
         | 
| 211 | 
            +
                    add_downsample: bool = True,
         | 
| 212 | 
            +
                    downsample_padding: int = 1,
         | 
| 213 | 
            +
                ):
         | 
| 214 | 
            +
                    super().__init__()
         | 
| 215 | 
            +
                    resnets = []
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    for i in range(num_layers):
         | 
| 218 | 
            +
                        # in_channels = in_channels if i == 0 else out_channels
         | 
| 219 | 
            +
                        resnets.append(
         | 
| 220 | 
            +
                            # ResnetBlock2D(
         | 
| 221 | 
            +
                            #     in_channels=in_channels,
         | 
| 222 | 
            +
                            #     out_channels=out_channels,
         | 
| 223 | 
            +
                            #     temb_channels=temb_channels,
         | 
| 224 | 
            +
                            #     eps=resnet_eps,
         | 
| 225 | 
            +
                            #     groups=resnet_groups,
         | 
| 226 | 
            +
                            #     dropout=dropout,
         | 
| 227 | 
            +
                            #     time_embedding_norm=resnet_time_scale_shift,
         | 
| 228 | 
            +
                            #     non_linearity=resnet_act_fn,
         | 
| 229 | 
            +
                            #     output_scale_factor=output_scale_factor,
         | 
| 230 | 
            +
                            #     pre_norm=resnet_pre_norm,
         | 
| 231 | 
            +
                            BasicBlock(
         | 
| 232 | 
            +
                                in_channels=in_channels,
         | 
| 233 | 
            +
                                out_channels=out_channels,
         | 
| 234 | 
            +
                                temb_channels=temb_channels,
         | 
| 235 | 
            +
                                eps=resnet_eps,
         | 
| 236 | 
            +
                                groups=resnet_groups,
         | 
| 237 | 
            +
                                dropout=dropout,
         | 
| 238 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 239 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 240 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 241 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 242 | 
            +
                            ) if i == num_layers - 1 else \
         | 
| 243 | 
            +
                            IdentityModule()
         | 
| 244 | 
            +
                        )
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                    if add_downsample:
         | 
| 249 | 
            +
                        self.downsamplers = nn.ModuleList(
         | 
| 250 | 
            +
                            [
         | 
| 251 | 
            +
                                # Downsample2D(
         | 
| 252 | 
            +
                                #     out_channels,
         | 
| 253 | 
            +
                                #     use_conv=True,
         | 
| 254 | 
            +
                                #     out_channels=out_channels,
         | 
| 255 | 
            +
                                #     padding=downsample_padding,
         | 
| 256 | 
            +
                                #     name="op",
         | 
| 257 | 
            +
                                # )
         | 
| 258 | 
            +
                                BasicBlock(
         | 
| 259 | 
            +
                                    in_channels=out_channels,
         | 
| 260 | 
            +
                                    out_channels=out_channels,
         | 
| 261 | 
            +
                                    temb_channels=temb_channels,
         | 
| 262 | 
            +
                                    stride=2,
         | 
| 263 | 
            +
                                    eps=resnet_eps,
         | 
| 264 | 
            +
                                    groups=resnet_groups,
         | 
| 265 | 
            +
                                    dropout=dropout,
         | 
| 266 | 
            +
                                    time_embedding_norm=resnet_time_scale_shift,
         | 
| 267 | 
            +
                                    non_linearity=resnet_act_fn,
         | 
| 268 | 
            +
                                    output_scale_factor=output_scale_factor,
         | 
| 269 | 
            +
                                    pre_norm=resnet_pre_norm,
         | 
| 270 | 
            +
                                )
         | 
| 271 | 
            +
                            ]
         | 
| 272 | 
            +
                        )
         | 
| 273 | 
            +
                    else:
         | 
| 274 | 
            +
                        self.downsamplers = None
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    self.gradient_checkpointing = False
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                def forward(
         | 
| 279 | 
            +
                    self,
         | 
| 280 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 281 | 
            +
                    temb: Optional[torch.FloatTensor] = None,
         | 
| 282 | 
            +
                ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
         | 
| 283 | 
            +
                    output_states = ()
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    for resnet in self.resnets:
         | 
| 286 | 
            +
                        hidden_states = resnet(hidden_states, temb)
         | 
| 287 | 
            +
                        output_states += (hidden_states,)
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    if self.downsamplers is not None:
         | 
| 290 | 
            +
                        for downsampler in self.downsamplers:
         | 
| 291 | 
            +
                            hidden_states = downsampler(hidden_states)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                        output_states += (hidden_states,)
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    return hidden_states, output_states
         | 
| 296 | 
            +
             | 
| 297 | 
            +
             | 
| 298 | 
            +
            class ControlProject(nn.Module):
         | 
| 299 | 
            +
                def __init__(self, num_channels, scale=8, is_empty=False) -> None:
         | 
| 300 | 
            +
                    super().__init__()
         | 
| 301 | 
            +
                    assert scale and scale & (scale - 1) == 0
         | 
| 302 | 
            +
                    self.is_empty = is_empty
         | 
| 303 | 
            +
                    self.scale = scale
         | 
| 304 | 
            +
                    if not is_empty:
         | 
| 305 | 
            +
                        if scale > 1:
         | 
| 306 | 
            +
                            self.down_scale = nn.AvgPool2d(scale, scale)
         | 
| 307 | 
            +
                        else:
         | 
| 308 | 
            +
                            self.down_scale = nn.Identity()
         | 
| 309 | 
            +
                        self.out = nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, bias=False)
         | 
| 310 | 
            +
                        for p in self.out.parameters():
         | 
| 311 | 
            +
                            nn.init.zeros_(p)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                def forward(
         | 
| 314 | 
            +
                        self,
         | 
| 315 | 
            +
                        hidden_states: torch.FloatTensor):
         | 
| 316 | 
            +
                    if self.is_empty:
         | 
| 317 | 
            +
                        shape = list(hidden_states.shape)
         | 
| 318 | 
            +
                        shape[-2] = shape[-2] // self.scale
         | 
| 319 | 
            +
                        shape[-1] = shape[-1] // self.scale
         | 
| 320 | 
            +
                        return torch.zeros(shape).to(hidden_states)
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    if len(hidden_states.shape) == 5:
         | 
| 323 | 
            +
                        B, F, C, H, W = hidden_states.shape
         | 
| 324 | 
            +
                        hidden_states = rearrange(hidden_states, "B F C H W -> (B F) C H W")
         | 
| 325 | 
            +
                        hidden_states = self.down_scale(hidden_states)
         | 
| 326 | 
            +
                        hidden_states = self.out(hidden_states)
         | 
| 327 | 
            +
                        hidden_states = rearrange(hidden_states, "(B F) C H W -> B F C H W", F=F)
         | 
| 328 | 
            +
                    else:
         | 
| 329 | 
            +
                        hidden_states = self.down_scale(hidden_states)
         | 
| 330 | 
            +
                        hidden_states = self.out(hidden_states)
         | 
| 331 | 
            +
                    return hidden_states
         | 
| 332 | 
            +
             | 
| 333 | 
            +
             | 
| 334 | 
            +
            class ControlNetModel(ModelMixin, ConfigMixin):
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                @register_to_config
         | 
| 339 | 
            +
                def __init__(
         | 
| 340 | 
            +
                    self,
         | 
| 341 | 
            +
                    in_channels: List[int] = [128, 128],
         | 
| 342 | 
            +
                    out_channels: List[int] = [128, 256],
         | 
| 343 | 
            +
                    groups: List[int] = [4, 8],
         | 
| 344 | 
            +
                    time_embed_dim: int = 256,
         | 
| 345 | 
            +
                    final_out_channels: int = 320,
         | 
| 346 | 
            +
                ):
         | 
| 347 | 
            +
                    super().__init__()
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                    self.time_proj = Timesteps(128, True, downscale_freq_shift=0)
         | 
| 350 | 
            +
                    self.time_embedding = TimestepEmbedding(128, time_embed_dim)
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    self.embedding = nn.Sequential(
         | 
| 353 | 
            +
                        nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1),
         | 
| 354 | 
            +
                        nn.GroupNorm(2, 64),
         | 
| 355 | 
            +
                        nn.ReLU(),
         | 
| 356 | 
            +
                        nn.Conv2d(64, 64, kernel_size=3, padding=1),
         | 
| 357 | 
            +
                        nn.GroupNorm(2, 64),
         | 
| 358 | 
            +
                        nn.ReLU(),
         | 
| 359 | 
            +
                        nn.Conv2d(64, 128, kernel_size=3, padding=1),
         | 
| 360 | 
            +
                        nn.GroupNorm(2, 128),
         | 
| 361 | 
            +
                        nn.ReLU(),
         | 
| 362 | 
            +
                    )
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    self.down_res = nn.ModuleList()
         | 
| 365 | 
            +
                    self.down_sample = nn.ModuleList()
         | 
| 366 | 
            +
                    for i in range(len(in_channels)):
         | 
| 367 | 
            +
                        self.down_res.append(
         | 
| 368 | 
            +
                            ResnetBlock2D(
         | 
| 369 | 
            +
                                in_channels=in_channels[i],
         | 
| 370 | 
            +
                                out_channels=out_channels[i],
         | 
| 371 | 
            +
                                temb_channels=time_embed_dim,
         | 
| 372 | 
            +
                                groups=groups[i]
         | 
| 373 | 
            +
                            ),
         | 
| 374 | 
            +
                        )
         | 
| 375 | 
            +
                        self.down_sample.append(
         | 
| 376 | 
            +
                            Downsample2D(
         | 
| 377 | 
            +
                                out_channels[i],
         | 
| 378 | 
            +
                                use_conv=True,
         | 
| 379 | 
            +
                                out_channels=out_channels[i],
         | 
| 380 | 
            +
                                padding=1,
         | 
| 381 | 
            +
                                name="op",
         | 
| 382 | 
            +
                            )
         | 
| 383 | 
            +
                        )
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    self.mid_convs = nn.ModuleList()
         | 
| 386 | 
            +
                    self.mid_convs.append(nn.Sequential(
         | 
| 387 | 
            +
                        nn.Conv2d(
         | 
| 388 | 
            +
                            in_channels=out_channels[-1],
         | 
| 389 | 
            +
                            out_channels=out_channels[-1],
         | 
| 390 | 
            +
                            kernel_size=3,
         | 
| 391 | 
            +
                            stride=1,
         | 
| 392 | 
            +
                            padding=1
         | 
| 393 | 
            +
                        ),
         | 
| 394 | 
            +
                        nn.ReLU(),
         | 
| 395 | 
            +
                        nn.GroupNorm(8, out_channels[-1]),
         | 
| 396 | 
            +
                        nn.Conv2d(
         | 
| 397 | 
            +
                            in_channels=out_channels[-1],
         | 
| 398 | 
            +
                            out_channels=out_channels[-1],
         | 
| 399 | 
            +
                            kernel_size=3,
         | 
| 400 | 
            +
                            stride=1,
         | 
| 401 | 
            +
                            padding=1
         | 
| 402 | 
            +
                        ),
         | 
| 403 | 
            +
                        nn.GroupNorm(8, out_channels[-1]),
         | 
| 404 | 
            +
                    ))
         | 
| 405 | 
            +
                    self.mid_convs.append(
         | 
| 406 | 
            +
                        nn.Conv2d(
         | 
| 407 | 
            +
                            in_channels=out_channels[-1],
         | 
| 408 | 
            +
                            out_channels=final_out_channels,
         | 
| 409 | 
            +
                            kernel_size=1,
         | 
| 410 | 
            +
                            stride=1,
         | 
| 411 | 
            +
                        ))
         | 
| 412 | 
            +
                    self.scale = 1.0  # nn.Parameter(torch.tensor(1.))
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 415 | 
            +
                    if hasattr(module, "gradient_checkpointing"):
         | 
| 416 | 
            +
                        module.gradient_checkpointing = value
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                # Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
         | 
| 419 | 
            +
                def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
         | 
| 420 | 
            +
                    """
         | 
| 421 | 
            +
                    Sets the attention processor to use [feed forward
         | 
| 422 | 
            +
                    chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                    Parameters:
         | 
| 425 | 
            +
                        chunk_size (`int`, *optional*):
         | 
| 426 | 
            +
                            The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
         | 
| 427 | 
            +
                            over each tensor of dim=`dim`.
         | 
| 428 | 
            +
                        dim (`int`, *optional*, defaults to `0`):
         | 
| 429 | 
            +
                            The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
         | 
| 430 | 
            +
                            or dim=1 (sequence length).
         | 
| 431 | 
            +
                    """
         | 
| 432 | 
            +
                    if dim not in [0, 1]:
         | 
| 433 | 
            +
                        raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    # By default chunk size is 1
         | 
| 436 | 
            +
                    chunk_size = chunk_size or 1
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
         | 
| 439 | 
            +
                        if hasattr(module, "set_chunk_feed_forward"):
         | 
| 440 | 
            +
                            module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                        for child in module.children():
         | 
| 443 | 
            +
                            fn_recursive_feed_forward(child, chunk_size, dim)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    for module in self.children():
         | 
| 446 | 
            +
                        fn_recursive_feed_forward(module, chunk_size, dim)
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                def forward(
         | 
| 449 | 
            +
                    self,
         | 
| 450 | 
            +
                    sample: torch.FloatTensor,
         | 
| 451 | 
            +
                    timestep: Union[torch.Tensor, float, int],
         | 
| 452 | 
            +
                ) -> Union[ControlNetOutput, Tuple]:
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    timesteps = timestep
         | 
| 455 | 
            +
                    if not torch.is_tensor(timesteps):
         | 
| 456 | 
            +
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         | 
| 457 | 
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         | 
| 458 | 
            +
                        is_mps = sample.device.type == "mps"
         | 
| 459 | 
            +
                        if isinstance(timestep, float):
         | 
| 460 | 
            +
                            dtype = torch.float32 if is_mps else torch.float64
         | 
| 461 | 
            +
                        else:
         | 
| 462 | 
            +
                            dtype = torch.int32 if is_mps else torch.int64
         | 
| 463 | 
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         | 
| 464 | 
            +
                    elif len(timesteps.shape) == 0:
         | 
| 465 | 
            +
                        timesteps = timesteps[None].to(sample.device)
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 468 | 
            +
                    batch_size = sample.shape[0]
         | 
| 469 | 
            +
                    timesteps = timesteps.expand(batch_size)
         | 
| 470 | 
            +
                    t_emb = self.time_proj(timesteps)
         | 
| 471 | 
            +
                    # `Timesteps` does not contain any weights and will always return f32 tensors
         | 
| 472 | 
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         | 
| 473 | 
            +
                    # there might be better ways to encapsulate this.
         | 
| 474 | 
            +
                    t_emb = t_emb.to(dtype=sample.dtype)
         | 
| 475 | 
            +
                    emb_batch = self.time_embedding(t_emb)
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                    # Repeat the embeddings num_video_frames times
         | 
| 478 | 
            +
                    # emb: [batch, channels] -> [batch * frames, channels]
         | 
| 479 | 
            +
                    emb = emb_batch
         | 
| 480 | 
            +
                    sample = self.embedding(sample)
         | 
| 481 | 
            +
                    for res, downsample in zip(self.down_res, self.down_sample):
         | 
| 482 | 
            +
                        sample = res(sample, emb)
         | 
| 483 | 
            +
                        sample = downsample(sample, emb)
         | 
| 484 | 
            +
                    sample = self.mid_convs[0](sample) + sample
         | 
| 485 | 
            +
                    sample = self.mid_convs[1](sample)
         | 
| 486 | 
            +
                    return {
         | 
| 487 | 
            +
                        'out': sample,
         | 
| 488 | 
            +
                        'scale': self.scale,
         | 
| 489 | 
            +
                    }
         | 
| 490 | 
            +
             | 
| 491 | 
            +
             | 
| 492 | 
            +
            def zero_module(module):
         | 
| 493 | 
            +
                for p in module.parameters():
         | 
| 494 | 
            +
                    nn.init.zeros_(p)
         | 
| 495 | 
            +
                return module
         | 
    	
        models/unet.py
    ADDED
    
    | @@ -0,0 +1,1387 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from dataclasses import dataclass
         | 
| 15 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
            import torch.nn as nn
         | 
| 19 | 
            +
            import torch.utils.checkpoint
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 22 | 
            +
            from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
         | 
| 23 | 
            +
            from diffusers.loaders.single_file_model import FromOriginalModelMixin
         | 
| 24 | 
            +
            from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
         | 
| 25 | 
            +
            from diffusers.models.activations import get_activation
         | 
| 26 | 
            +
            from diffusers.models.attention_processor import (
         | 
| 27 | 
            +
                ADDED_KV_ATTENTION_PROCESSORS,
         | 
| 28 | 
            +
                CROSS_ATTENTION_PROCESSORS,
         | 
| 29 | 
            +
                Attention,
         | 
| 30 | 
            +
                AttentionProcessor,
         | 
| 31 | 
            +
                AttnAddedKVProcessor,
         | 
| 32 | 
            +
                AttnProcessor,
         | 
| 33 | 
            +
            )
         | 
| 34 | 
            +
            from diffusers.models.embeddings import (
         | 
| 35 | 
            +
                GaussianFourierProjection,
         | 
| 36 | 
            +
                GLIGENTextBoundingboxProjection,
         | 
| 37 | 
            +
                ImageHintTimeEmbedding,
         | 
| 38 | 
            +
                ImageProjection,
         | 
| 39 | 
            +
                ImageTimeEmbedding,
         | 
| 40 | 
            +
                TextImageProjection,
         | 
| 41 | 
            +
                TextImageTimeEmbedding,
         | 
| 42 | 
            +
                TextTimeEmbedding,
         | 
| 43 | 
            +
                TimestepEmbedding,
         | 
| 44 | 
            +
                Timesteps,
         | 
| 45 | 
            +
            )
         | 
| 46 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 47 | 
            +
            from diffusers.models.unets.unet_2d_blocks import (
         | 
| 48 | 
            +
                get_down_block,
         | 
| 49 | 
            +
                get_mid_block,
         | 
| 50 | 
            +
                get_up_block,
         | 
| 51 | 
            +
            )
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            UNET_CONFIG = {
         | 
| 57 | 
            +
                "_class_name": "UNet2DConditionModel",
         | 
| 58 | 
            +
                "_diffusers_version": "0.19.0.dev0",
         | 
| 59 | 
            +
                "act_fn": "silu",
         | 
| 60 | 
            +
                "addition_embed_type": "text_time",
         | 
| 61 | 
            +
                "addition_embed_type_num_heads": 64,
         | 
| 62 | 
            +
                "addition_time_embed_dim": 256,
         | 
| 63 | 
            +
                "attention_head_dim": [
         | 
| 64 | 
            +
                    5,
         | 
| 65 | 
            +
                    10,
         | 
| 66 | 
            +
                    20
         | 
| 67 | 
            +
                ],
         | 
| 68 | 
            +
                "block_out_channels": [
         | 
| 69 | 
            +
                    320,
         | 
| 70 | 
            +
                    640,
         | 
| 71 | 
            +
                    1280
         | 
| 72 | 
            +
                ],
         | 
| 73 | 
            +
                "center_input_sample": False,
         | 
| 74 | 
            +
                "class_embed_type": None,
         | 
| 75 | 
            +
                "class_embeddings_concat": False,
         | 
| 76 | 
            +
                "conv_in_kernel": 3,
         | 
| 77 | 
            +
                "conv_out_kernel": 3,
         | 
| 78 | 
            +
                "cross_attention_dim": 2048,
         | 
| 79 | 
            +
                "cross_attention_norm": None,
         | 
| 80 | 
            +
                "down_block_types": [
         | 
| 81 | 
            +
                    "DownBlock2D",
         | 
| 82 | 
            +
                    "CrossAttnDownBlock2D",
         | 
| 83 | 
            +
                    "CrossAttnDownBlock2D"
         | 
| 84 | 
            +
                ],
         | 
| 85 | 
            +
                "downsample_padding": 1,
         | 
| 86 | 
            +
                "dual_cross_attention": False,
         | 
| 87 | 
            +
                "encoder_hid_dim": None,
         | 
| 88 | 
            +
                "encoder_hid_dim_type": None,
         | 
| 89 | 
            +
                "flip_sin_to_cos": True,
         | 
| 90 | 
            +
                "freq_shift": 0,
         | 
| 91 | 
            +
                "in_channels": 4,
         | 
| 92 | 
            +
                "layers_per_block": 2,
         | 
| 93 | 
            +
                "mid_block_only_cross_attention": None,
         | 
| 94 | 
            +
                "mid_block_scale_factor": 1,
         | 
| 95 | 
            +
                "mid_block_type": "UNetMidBlock2DCrossAttn",
         | 
| 96 | 
            +
                "norm_eps": 1e-05,
         | 
| 97 | 
            +
                "norm_num_groups": 32,
         | 
| 98 | 
            +
                "num_attention_heads": None,
         | 
| 99 | 
            +
                "num_class_embeds": None,
         | 
| 100 | 
            +
                "only_cross_attention": False,
         | 
| 101 | 
            +
                "out_channels": 4,
         | 
| 102 | 
            +
                "projection_class_embeddings_input_dim": 2816,
         | 
| 103 | 
            +
                "resnet_out_scale_factor": 1.0,
         | 
| 104 | 
            +
                "resnet_skip_time_act": False,
         | 
| 105 | 
            +
                "resnet_time_scale_shift": "default",
         | 
| 106 | 
            +
                "sample_size": 128,
         | 
| 107 | 
            +
                "time_cond_proj_dim": None,
         | 
| 108 | 
            +
                "time_embedding_act_fn": None,
         | 
| 109 | 
            +
                "time_embedding_dim": None,
         | 
| 110 | 
            +
                "time_embedding_type": "positional",
         | 
| 111 | 
            +
                "timestep_post_act": None,
         | 
| 112 | 
            +
                "transformer_layers_per_block": [
         | 
| 113 | 
            +
                    1,
         | 
| 114 | 
            +
                    2,
         | 
| 115 | 
            +
                    10
         | 
| 116 | 
            +
                ],
         | 
| 117 | 
            +
                "up_block_types": [
         | 
| 118 | 
            +
                    "CrossAttnUpBlock2D",
         | 
| 119 | 
            +
                    "CrossAttnUpBlock2D",
         | 
| 120 | 
            +
                    "UpBlock2D"
         | 
| 121 | 
            +
                ],
         | 
| 122 | 
            +
                "upcast_attention": None,
         | 
| 123 | 
            +
                "use_linear_projection": True
         | 
| 124 | 
            +
            }
         | 
| 125 | 
            +
             | 
| 126 | 
            +
             | 
| 127 | 
            +
            @dataclass
         | 
| 128 | 
            +
            class UNet2DConditionOutput(BaseOutput):
         | 
| 129 | 
            +
                """
         | 
| 130 | 
            +
                The output of [`UNet2DConditionModel`].
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                Args:
         | 
| 133 | 
            +
                    sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
         | 
| 134 | 
            +
                        The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
         | 
| 135 | 
            +
                """
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                sample: torch.Tensor = None
         | 
| 138 | 
            +
             | 
| 139 | 
            +
             | 
| 140 | 
            +
            class UNet2DConditionModel(
         | 
| 141 | 
            +
                ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
         | 
| 142 | 
            +
            ):
         | 
| 143 | 
            +
                r"""
         | 
| 144 | 
            +
                A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
         | 
| 145 | 
            +
                shaped output.
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
         | 
| 148 | 
            +
                for all models (such as downloading or saving).
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                Parameters:
         | 
| 151 | 
            +
                    sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
         | 
| 152 | 
            +
                        Height and width of input/output sample.
         | 
| 153 | 
            +
                    in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
         | 
| 154 | 
            +
                    out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
         | 
| 155 | 
            +
                    center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
         | 
| 156 | 
            +
                    flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
         | 
| 157 | 
            +
                        Whether to flip the sin to cos in the time embedding.
         | 
| 158 | 
            +
                    freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
         | 
| 159 | 
            +
                    down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
         | 
| 160 | 
            +
                        The tuple of downsample blocks to use.
         | 
| 161 | 
            +
                    mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
         | 
| 162 | 
            +
                        Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
         | 
| 163 | 
            +
                        `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
         | 
| 164 | 
            +
                    up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
         | 
| 165 | 
            +
                        The tuple of upsample blocks to use.
         | 
| 166 | 
            +
                    only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
         | 
| 167 | 
            +
                        Whether to include self-attention in the basic transformer blocks, see
         | 
| 168 | 
            +
                        [`~models.attention.BasicTransformerBlock`].
         | 
| 169 | 
            +
                    block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
         | 
| 170 | 
            +
                        The tuple of output channels for each block.
         | 
| 171 | 
            +
                    layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
         | 
| 172 | 
            +
                    downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
         | 
| 173 | 
            +
                    mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
         | 
| 174 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         | 
| 175 | 
            +
                    act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
         | 
| 176 | 
            +
                    norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
         | 
| 177 | 
            +
                        If `None`, normalization and activation layers is skipped in post-processing.
         | 
| 178 | 
            +
                    norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
         | 
| 179 | 
            +
                    cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
         | 
| 180 | 
            +
                        The dimension of the cross attention features.
         | 
| 181 | 
            +
                    transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
         | 
| 182 | 
            +
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
         | 
| 183 | 
            +
                        [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
         | 
| 184 | 
            +
                        [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         | 
| 185 | 
            +
                    reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
         | 
| 186 | 
            +
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
         | 
| 187 | 
            +
                        blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
         | 
| 188 | 
            +
                        [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
         | 
| 189 | 
            +
                        [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         | 
| 190 | 
            +
                    encoder_hid_dim (`int`, *optional*, defaults to None):
         | 
| 191 | 
            +
                        If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
         | 
| 192 | 
            +
                        dimension to `cross_attention_dim`.
         | 
| 193 | 
            +
                    encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
         | 
| 194 | 
            +
                        If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
         | 
| 195 | 
            +
                        embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
         | 
| 196 | 
            +
                    attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
         | 
| 197 | 
            +
                    num_attention_heads (`int`, *optional*):
         | 
| 198 | 
            +
                        The number of attention heads. If not defined, defaults to `attention_head_dim`
         | 
| 199 | 
            +
                    resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
         | 
| 200 | 
            +
                        for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
         | 
| 201 | 
            +
                    class_embed_type (`str`, *optional*, defaults to `None`):
         | 
| 202 | 
            +
                        The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
         | 
| 203 | 
            +
                        `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
         | 
| 204 | 
            +
                    addition_embed_type (`str`, *optional*, defaults to `None`):
         | 
| 205 | 
            +
                        Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
         | 
| 206 | 
            +
                        "text". "text" will use the `TextTimeEmbedding` layer.
         | 
| 207 | 
            +
                    addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
         | 
| 208 | 
            +
                        Dimension for the timestep embeddings.
         | 
| 209 | 
            +
                    num_class_embeds (`int`, *optional*, defaults to `None`):
         | 
| 210 | 
            +
                        Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
         | 
| 211 | 
            +
                        class conditioning with `class_embed_type` equal to `None`.
         | 
| 212 | 
            +
                    time_embedding_type (`str`, *optional*, defaults to `positional`):
         | 
| 213 | 
            +
                        The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
         | 
| 214 | 
            +
                    time_embedding_dim (`int`, *optional*, defaults to `None`):
         | 
| 215 | 
            +
                        An optional override for the dimension of the projected time embedding.
         | 
| 216 | 
            +
                    time_embedding_act_fn (`str`, *optional*, defaults to `None`):
         | 
| 217 | 
            +
                        Optional activation function to use only once on the time embeddings before they are passed to the rest of
         | 
| 218 | 
            +
                        the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
         | 
| 219 | 
            +
                    timestep_post_act (`str`, *optional*, defaults to `None`):
         | 
| 220 | 
            +
                        The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
         | 
| 221 | 
            +
                    time_cond_proj_dim (`int`, *optional*, defaults to `None`):
         | 
| 222 | 
            +
                        The dimension of `cond_proj` layer in the timestep embedding.
         | 
| 223 | 
            +
                    conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
         | 
| 224 | 
            +
                    conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
         | 
| 225 | 
            +
                    projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
         | 
| 226 | 
            +
                        `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
         | 
| 227 | 
            +
                    class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
         | 
| 228 | 
            +
                        embeddings with the class embeddings.
         | 
| 229 | 
            +
                    mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
         | 
| 230 | 
            +
                        Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
         | 
| 231 | 
            +
                        `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
         | 
| 232 | 
            +
                        `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
         | 
| 233 | 
            +
                        otherwise.
         | 
| 234 | 
            +
                """
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 237 | 
            +
                _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                @register_to_config
         | 
| 240 | 
            +
                def __init__(
         | 
| 241 | 
            +
                    self,
         | 
| 242 | 
            +
                    sample_size: Optional[int] = None,
         | 
| 243 | 
            +
                    in_channels: int = 4,
         | 
| 244 | 
            +
                    out_channels: int = 4,
         | 
| 245 | 
            +
                    center_input_sample: bool = False,
         | 
| 246 | 
            +
                    flip_sin_to_cos: bool = True,
         | 
| 247 | 
            +
                    freq_shift: int = 0,
         | 
| 248 | 
            +
                    down_block_types: Tuple[str] = (
         | 
| 249 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 250 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 251 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 252 | 
            +
                        "DownBlock2D",
         | 
| 253 | 
            +
                    ),
         | 
| 254 | 
            +
                    mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
         | 
| 255 | 
            +
                    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
         | 
| 256 | 
            +
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         | 
| 257 | 
            +
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         | 
| 258 | 
            +
                    layers_per_block: Union[int, Tuple[int]] = 2,
         | 
| 259 | 
            +
                    downsample_padding: int = 1,
         | 
| 260 | 
            +
                    mid_block_scale_factor: float = 1,
         | 
| 261 | 
            +
                    dropout: float = 0.0,
         | 
| 262 | 
            +
                    act_fn: str = "silu",
         | 
| 263 | 
            +
                    norm_num_groups: Optional[int] = 32,
         | 
| 264 | 
            +
                    norm_eps: float = 1e-5,
         | 
| 265 | 
            +
                    cross_attention_dim: Union[int, Tuple[int]] = 1280,
         | 
| 266 | 
            +
                    transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
         | 
| 267 | 
            +
                    reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
         | 
| 268 | 
            +
                    encoder_hid_dim: Optional[int] = None,
         | 
| 269 | 
            +
                    encoder_hid_dim_type: Optional[str] = None,
         | 
| 270 | 
            +
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         | 
| 271 | 
            +
                    num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
         | 
| 272 | 
            +
                    dual_cross_attention: bool = False,
         | 
| 273 | 
            +
                    use_linear_projection: bool = False,
         | 
| 274 | 
            +
                    class_embed_type: Optional[str] = None,
         | 
| 275 | 
            +
                    addition_embed_type: Optional[str] = None,
         | 
| 276 | 
            +
                    addition_time_embed_dim: Optional[int] = None,
         | 
| 277 | 
            +
                    num_class_embeds: Optional[int] = None,
         | 
| 278 | 
            +
                    upcast_attention: bool = False,
         | 
| 279 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 280 | 
            +
                    resnet_skip_time_act: bool = False,
         | 
| 281 | 
            +
                    resnet_out_scale_factor: float = 1.0,
         | 
| 282 | 
            +
                    time_embedding_type: str = "positional",
         | 
| 283 | 
            +
                    time_embedding_dim: Optional[int] = None,
         | 
| 284 | 
            +
                    time_embedding_act_fn: Optional[str] = None,
         | 
| 285 | 
            +
                    timestep_post_act: Optional[str] = None,
         | 
| 286 | 
            +
                    time_cond_proj_dim: Optional[int] = None,
         | 
| 287 | 
            +
                    conv_in_kernel: int = 3,
         | 
| 288 | 
            +
                    conv_out_kernel: int = 3,
         | 
| 289 | 
            +
                    projection_class_embeddings_input_dim: Optional[int] = None,
         | 
| 290 | 
            +
                    attention_type: str = "default",
         | 
| 291 | 
            +
                    class_embeddings_concat: bool = False,
         | 
| 292 | 
            +
                    mid_block_only_cross_attention: Optional[bool] = None,
         | 
| 293 | 
            +
                    cross_attention_norm: Optional[str] = None,
         | 
| 294 | 
            +
                    addition_embed_type_num_heads: int = 64,
         | 
| 295 | 
            +
                ):
         | 
| 296 | 
            +
                    super().__init__()
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    self.sample_size = sample_size
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    if num_attention_heads is not None:
         | 
| 301 | 
            +
                        raise ValueError(
         | 
| 302 | 
            +
                            "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
         | 
| 303 | 
            +
                        )
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                    # If `num_attention_heads` is not defined (which is the case for most models)
         | 
| 306 | 
            +
                    # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
         | 
| 307 | 
            +
                    # The reason for this behavior is to correct for incorrectly named variables that were introduced
         | 
| 308 | 
            +
                    # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
         | 
| 309 | 
            +
                    # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
         | 
| 310 | 
            +
                    # which is why we correct for the naming here.
         | 
| 311 | 
            +
                    num_attention_heads = num_attention_heads or attention_head_dim
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    # Check inputs
         | 
| 314 | 
            +
                    self._check_config(
         | 
| 315 | 
            +
                        down_block_types=down_block_types,
         | 
| 316 | 
            +
                        up_block_types=up_block_types,
         | 
| 317 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 318 | 
            +
                        block_out_channels=block_out_channels,
         | 
| 319 | 
            +
                        layers_per_block=layers_per_block,
         | 
| 320 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 321 | 
            +
                        transformer_layers_per_block=transformer_layers_per_block,
         | 
| 322 | 
            +
                        reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
         | 
| 323 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 324 | 
            +
                        num_attention_heads=num_attention_heads,
         | 
| 325 | 
            +
                    )
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                    # input
         | 
| 328 | 
            +
                    conv_in_padding = (conv_in_kernel - 1) // 2
         | 
| 329 | 
            +
                    self.conv_in = nn.Conv2d(
         | 
| 330 | 
            +
                        in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
         | 
| 331 | 
            +
                    )
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                    # time
         | 
| 334 | 
            +
                    time_embed_dim, timestep_input_dim = self._set_time_proj(
         | 
| 335 | 
            +
                        time_embedding_type,
         | 
| 336 | 
            +
                        block_out_channels=block_out_channels,
         | 
| 337 | 
            +
                        flip_sin_to_cos=flip_sin_to_cos,
         | 
| 338 | 
            +
                        freq_shift=freq_shift,
         | 
| 339 | 
            +
                        time_embedding_dim=time_embedding_dim,
         | 
| 340 | 
            +
                    )
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    self.time_embedding = TimestepEmbedding(
         | 
| 343 | 
            +
                        timestep_input_dim,
         | 
| 344 | 
            +
                        time_embed_dim,
         | 
| 345 | 
            +
                        act_fn=act_fn,
         | 
| 346 | 
            +
                        post_act_fn=timestep_post_act,
         | 
| 347 | 
            +
                        cond_proj_dim=time_cond_proj_dim,
         | 
| 348 | 
            +
                    )
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    self._set_encoder_hid_proj(
         | 
| 351 | 
            +
                        encoder_hid_dim_type,
         | 
| 352 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 353 | 
            +
                        encoder_hid_dim=encoder_hid_dim,
         | 
| 354 | 
            +
                    )
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    # class embedding
         | 
| 357 | 
            +
                    self._set_class_embedding(
         | 
| 358 | 
            +
                        class_embed_type,
         | 
| 359 | 
            +
                        act_fn=act_fn,
         | 
| 360 | 
            +
                        num_class_embeds=num_class_embeds,
         | 
| 361 | 
            +
                        projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
         | 
| 362 | 
            +
                        time_embed_dim=time_embed_dim,
         | 
| 363 | 
            +
                        timestep_input_dim=timestep_input_dim,
         | 
| 364 | 
            +
                    )
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    self._set_add_embedding(
         | 
| 367 | 
            +
                        addition_embed_type,
         | 
| 368 | 
            +
                        addition_embed_type_num_heads=addition_embed_type_num_heads,
         | 
| 369 | 
            +
                        addition_time_embed_dim=addition_time_embed_dim,
         | 
| 370 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 371 | 
            +
                        encoder_hid_dim=encoder_hid_dim,
         | 
| 372 | 
            +
                        flip_sin_to_cos=flip_sin_to_cos,
         | 
| 373 | 
            +
                        freq_shift=freq_shift,
         | 
| 374 | 
            +
                        projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
         | 
| 375 | 
            +
                        time_embed_dim=time_embed_dim,
         | 
| 376 | 
            +
                    )
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    if time_embedding_act_fn is None:
         | 
| 379 | 
            +
                        self.time_embed_act = None
         | 
| 380 | 
            +
                    else:
         | 
| 381 | 
            +
                        self.time_embed_act = get_activation(time_embedding_act_fn)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    self.down_blocks = nn.ModuleList([])
         | 
| 384 | 
            +
                    self.up_blocks = nn.ModuleList([])
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    if isinstance(only_cross_attention, bool):
         | 
| 387 | 
            +
                        if mid_block_only_cross_attention is None:
         | 
| 388 | 
            +
                            mid_block_only_cross_attention = only_cross_attention
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    if mid_block_only_cross_attention is None:
         | 
| 393 | 
            +
                        mid_block_only_cross_attention = False
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                    if isinstance(num_attention_heads, int):
         | 
| 396 | 
            +
                        num_attention_heads = (num_attention_heads,) * len(down_block_types)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    if isinstance(attention_head_dim, int):
         | 
| 399 | 
            +
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                    if isinstance(cross_attention_dim, int):
         | 
| 402 | 
            +
                        cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    if isinstance(layers_per_block, int):
         | 
| 405 | 
            +
                        layers_per_block = [layers_per_block] * len(down_block_types)
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    if isinstance(transformer_layers_per_block, int):
         | 
| 408 | 
            +
                        transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    if class_embeddings_concat:
         | 
| 411 | 
            +
                        # The time embeddings are concatenated with the class embeddings. The dimension of the
         | 
| 412 | 
            +
                        # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
         | 
| 413 | 
            +
                        # regular time embeddings
         | 
| 414 | 
            +
                        blocks_time_embed_dim = time_embed_dim * 2
         | 
| 415 | 
            +
                    else:
         | 
| 416 | 
            +
                        blocks_time_embed_dim = time_embed_dim
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    # down
         | 
| 419 | 
            +
                    output_channel = block_out_channels[0]
         | 
| 420 | 
            +
                    for i, down_block_type in enumerate(down_block_types):
         | 
| 421 | 
            +
                        input_channel = output_channel
         | 
| 422 | 
            +
                        output_channel = block_out_channels[i]
         | 
| 423 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                        down_block = get_down_block(
         | 
| 426 | 
            +
                            down_block_type,
         | 
| 427 | 
            +
                            num_layers=layers_per_block[i],
         | 
| 428 | 
            +
                            transformer_layers_per_block=transformer_layers_per_block[i],
         | 
| 429 | 
            +
                            in_channels=input_channel,
         | 
| 430 | 
            +
                            out_channels=output_channel,
         | 
| 431 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 432 | 
            +
                            add_downsample=not is_final_block,
         | 
| 433 | 
            +
                            resnet_eps=norm_eps,
         | 
| 434 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 435 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 436 | 
            +
                            cross_attention_dim=cross_attention_dim[i],
         | 
| 437 | 
            +
                            num_attention_heads=num_attention_heads[i],
         | 
| 438 | 
            +
                            downsample_padding=downsample_padding,
         | 
| 439 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 440 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 441 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 442 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 443 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 444 | 
            +
                            attention_type=attention_type,
         | 
| 445 | 
            +
                            resnet_skip_time_act=resnet_skip_time_act,
         | 
| 446 | 
            +
                            resnet_out_scale_factor=resnet_out_scale_factor,
         | 
| 447 | 
            +
                            cross_attention_norm=cross_attention_norm,
         | 
| 448 | 
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         | 
| 449 | 
            +
                            dropout=dropout,
         | 
| 450 | 
            +
                        )
         | 
| 451 | 
            +
                        self.down_blocks.append(down_block)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    # mid
         | 
| 454 | 
            +
                    self.mid_block = get_mid_block(
         | 
| 455 | 
            +
                        mid_block_type,
         | 
| 456 | 
            +
                        temb_channels=blocks_time_embed_dim,
         | 
| 457 | 
            +
                        in_channels=block_out_channels[-1],
         | 
| 458 | 
            +
                        resnet_eps=norm_eps,
         | 
| 459 | 
            +
                        resnet_act_fn=act_fn,
         | 
| 460 | 
            +
                        resnet_groups=norm_num_groups,
         | 
| 461 | 
            +
                        output_scale_factor=mid_block_scale_factor,
         | 
| 462 | 
            +
                        transformer_layers_per_block=transformer_layers_per_block[-1],
         | 
| 463 | 
            +
                        num_attention_heads=num_attention_heads[-1],
         | 
| 464 | 
            +
                        cross_attention_dim=cross_attention_dim[-1],
         | 
| 465 | 
            +
                        dual_cross_attention=dual_cross_attention,
         | 
| 466 | 
            +
                        use_linear_projection=use_linear_projection,
         | 
| 467 | 
            +
                        mid_block_only_cross_attention=mid_block_only_cross_attention,
         | 
| 468 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 469 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 470 | 
            +
                        attention_type=attention_type,
         | 
| 471 | 
            +
                        resnet_skip_time_act=resnet_skip_time_act,
         | 
| 472 | 
            +
                        cross_attention_norm=cross_attention_norm,
         | 
| 473 | 
            +
                        attention_head_dim=attention_head_dim[-1],
         | 
| 474 | 
            +
                        dropout=dropout,
         | 
| 475 | 
            +
                    )
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                    # count how many layers upsample the images
         | 
| 478 | 
            +
                    self.num_upsamplers = 0
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    # up
         | 
| 481 | 
            +
                    reversed_block_out_channels = list(reversed(block_out_channels))
         | 
| 482 | 
            +
                    reversed_num_attention_heads = list(reversed(num_attention_heads))
         | 
| 483 | 
            +
                    reversed_layers_per_block = list(reversed(layers_per_block))
         | 
| 484 | 
            +
                    reversed_cross_attention_dim = list(reversed(cross_attention_dim))
         | 
| 485 | 
            +
                    reversed_transformer_layers_per_block = (
         | 
| 486 | 
            +
                        list(reversed(transformer_layers_per_block))
         | 
| 487 | 
            +
                        if reverse_transformer_layers_per_block is None
         | 
| 488 | 
            +
                        else reverse_transformer_layers_per_block
         | 
| 489 | 
            +
                    )
         | 
| 490 | 
            +
                    only_cross_attention = list(reversed(only_cross_attention))
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    output_channel = reversed_block_out_channels[0]
         | 
| 493 | 
            +
                    for i, up_block_type in enumerate(up_block_types):
         | 
| 494 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                        prev_output_channel = output_channel
         | 
| 497 | 
            +
                        output_channel = reversed_block_out_channels[i]
         | 
| 498 | 
            +
                        input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                        # add upsample block for all BUT final layer
         | 
| 501 | 
            +
                        if not is_final_block:
         | 
| 502 | 
            +
                            add_upsample = True
         | 
| 503 | 
            +
                            self.num_upsamplers += 1
         | 
| 504 | 
            +
                        else:
         | 
| 505 | 
            +
                            add_upsample = False
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                        up_block = get_up_block(
         | 
| 508 | 
            +
                            up_block_type,
         | 
| 509 | 
            +
                            num_layers=reversed_layers_per_block[i] + 1,
         | 
| 510 | 
            +
                            transformer_layers_per_block=reversed_transformer_layers_per_block[i],
         | 
| 511 | 
            +
                            in_channels=input_channel,
         | 
| 512 | 
            +
                            out_channels=output_channel,
         | 
| 513 | 
            +
                            prev_output_channel=prev_output_channel,
         | 
| 514 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 515 | 
            +
                            add_upsample=add_upsample,
         | 
| 516 | 
            +
                            resnet_eps=norm_eps,
         | 
| 517 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 518 | 
            +
                            resolution_idx=i,
         | 
| 519 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 520 | 
            +
                            cross_attention_dim=reversed_cross_attention_dim[i],
         | 
| 521 | 
            +
                            num_attention_heads=reversed_num_attention_heads[i],
         | 
| 522 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 523 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 524 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 525 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 526 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 527 | 
            +
                            attention_type=attention_type,
         | 
| 528 | 
            +
                            resnet_skip_time_act=resnet_skip_time_act,
         | 
| 529 | 
            +
                            resnet_out_scale_factor=resnet_out_scale_factor,
         | 
| 530 | 
            +
                            cross_attention_norm=cross_attention_norm,
         | 
| 531 | 
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         | 
| 532 | 
            +
                            dropout=dropout,
         | 
| 533 | 
            +
                        )
         | 
| 534 | 
            +
                        self.up_blocks.append(up_block)
         | 
| 535 | 
            +
                        prev_output_channel = output_channel
         | 
| 536 | 
            +
             | 
| 537 | 
            +
                    # out
         | 
| 538 | 
            +
                    if norm_num_groups is not None:
         | 
| 539 | 
            +
                        self.conv_norm_out = nn.GroupNorm(
         | 
| 540 | 
            +
                            num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
         | 
| 541 | 
            +
                        )
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                        self.conv_act = get_activation(act_fn)
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                    else:
         | 
| 546 | 
            +
                        self.conv_norm_out = None
         | 
| 547 | 
            +
                        self.conv_act = None
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                    conv_out_padding = (conv_out_kernel - 1) // 2
         | 
| 550 | 
            +
                    self.conv_out = nn.Conv2d(
         | 
| 551 | 
            +
                        block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
         | 
| 552 | 
            +
                    )
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                    self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                def _check_config(
         | 
| 557 | 
            +
                    self,
         | 
| 558 | 
            +
                    down_block_types: Tuple[str],
         | 
| 559 | 
            +
                    up_block_types: Tuple[str],
         | 
| 560 | 
            +
                    only_cross_attention: Union[bool, Tuple[bool]],
         | 
| 561 | 
            +
                    block_out_channels: Tuple[int],
         | 
| 562 | 
            +
                    layers_per_block: Union[int, Tuple[int]],
         | 
| 563 | 
            +
                    cross_attention_dim: Union[int, Tuple[int]],
         | 
| 564 | 
            +
                    transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
         | 
| 565 | 
            +
                    reverse_transformer_layers_per_block: bool,
         | 
| 566 | 
            +
                    attention_head_dim: int,
         | 
| 567 | 
            +
                    num_attention_heads: Optional[Union[int, Tuple[int]]],
         | 
| 568 | 
            +
                ):
         | 
| 569 | 
            +
                    if len(down_block_types) != len(up_block_types):
         | 
| 570 | 
            +
                        raise ValueError(
         | 
| 571 | 
            +
                            f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
         | 
| 572 | 
            +
                        )
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    if len(block_out_channels) != len(down_block_types):
         | 
| 575 | 
            +
                        raise ValueError(
         | 
| 576 | 
            +
                            f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
         | 
| 577 | 
            +
                        )
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                    if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
         | 
| 580 | 
            +
                        raise ValueError(
         | 
| 581 | 
            +
                            f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
         | 
| 582 | 
            +
                        )
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                    if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
         | 
| 585 | 
            +
                        raise ValueError(
         | 
| 586 | 
            +
                            f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
         | 
| 587 | 
            +
                        )
         | 
| 588 | 
            +
             | 
| 589 | 
            +
                    if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
         | 
| 590 | 
            +
                        raise ValueError(
         | 
| 591 | 
            +
                            f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
         | 
| 592 | 
            +
                        )
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                    if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
         | 
| 595 | 
            +
                        raise ValueError(
         | 
| 596 | 
            +
                            f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
         | 
| 597 | 
            +
                        )
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
         | 
| 600 | 
            +
                        raise ValueError(
         | 
| 601 | 
            +
                            f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
         | 
| 602 | 
            +
                        )
         | 
| 603 | 
            +
                    if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
         | 
| 604 | 
            +
                        for layer_number_per_block in transformer_layers_per_block:
         | 
| 605 | 
            +
                            if isinstance(layer_number_per_block, list):
         | 
| 606 | 
            +
                                raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
         | 
| 607 | 
            +
             | 
| 608 | 
            +
                def _set_time_proj(
         | 
| 609 | 
            +
                    self,
         | 
| 610 | 
            +
                    time_embedding_type: str,
         | 
| 611 | 
            +
                    block_out_channels: int,
         | 
| 612 | 
            +
                    flip_sin_to_cos: bool,
         | 
| 613 | 
            +
                    freq_shift: float,
         | 
| 614 | 
            +
                    time_embedding_dim: int,
         | 
| 615 | 
            +
                ) -> Tuple[int, int]:
         | 
| 616 | 
            +
                    if time_embedding_type == "fourier":
         | 
| 617 | 
            +
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
         | 
| 618 | 
            +
                        if time_embed_dim % 2 != 0:
         | 
| 619 | 
            +
                            raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
         | 
| 620 | 
            +
                        self.time_proj = GaussianFourierProjection(
         | 
| 621 | 
            +
                            time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
         | 
| 622 | 
            +
                        )
         | 
| 623 | 
            +
                        timestep_input_dim = time_embed_dim
         | 
| 624 | 
            +
                    elif time_embedding_type == "positional":
         | 
| 625 | 
            +
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
         | 
| 626 | 
            +
             | 
| 627 | 
            +
                        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         | 
| 628 | 
            +
                        timestep_input_dim = block_out_channels[0]
         | 
| 629 | 
            +
                    else:
         | 
| 630 | 
            +
                        raise ValueError(
         | 
| 631 | 
            +
                            f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
         | 
| 632 | 
            +
                        )
         | 
| 633 | 
            +
             | 
| 634 | 
            +
                    return time_embed_dim, timestep_input_dim
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                def _set_encoder_hid_proj(
         | 
| 637 | 
            +
                    self,
         | 
| 638 | 
            +
                    encoder_hid_dim_type: Optional[str],
         | 
| 639 | 
            +
                    cross_attention_dim: Union[int, Tuple[int]],
         | 
| 640 | 
            +
                    encoder_hid_dim: Optional[int],
         | 
| 641 | 
            +
                ):
         | 
| 642 | 
            +
                    if encoder_hid_dim_type is None and encoder_hid_dim is not None:
         | 
| 643 | 
            +
                        encoder_hid_dim_type = "text_proj"
         | 
| 644 | 
            +
                        self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
         | 
| 645 | 
            +
                        logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                    if encoder_hid_dim is None and encoder_hid_dim_type is not None:
         | 
| 648 | 
            +
                        raise ValueError(
         | 
| 649 | 
            +
                            f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
         | 
| 650 | 
            +
                        )
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                    if encoder_hid_dim_type == "text_proj":
         | 
| 653 | 
            +
                        self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
         | 
| 654 | 
            +
                    elif encoder_hid_dim_type == "text_image_proj":
         | 
| 655 | 
            +
                        # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         | 
| 656 | 
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         | 
| 657 | 
            +
                        # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
         | 
| 658 | 
            +
                        self.encoder_hid_proj = TextImageProjection(
         | 
| 659 | 
            +
                            text_embed_dim=encoder_hid_dim,
         | 
| 660 | 
            +
                            image_embed_dim=cross_attention_dim,
         | 
| 661 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 662 | 
            +
                        )
         | 
| 663 | 
            +
                    elif encoder_hid_dim_type == "image_proj":
         | 
| 664 | 
            +
                        # Kandinsky 2.2
         | 
| 665 | 
            +
                        self.encoder_hid_proj = ImageProjection(
         | 
| 666 | 
            +
                            image_embed_dim=encoder_hid_dim,
         | 
| 667 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 668 | 
            +
                        )
         | 
| 669 | 
            +
                    elif encoder_hid_dim_type is not None:
         | 
| 670 | 
            +
                        raise ValueError(
         | 
| 671 | 
            +
                            f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
         | 
| 672 | 
            +
                        )
         | 
| 673 | 
            +
                    else:
         | 
| 674 | 
            +
                        self.encoder_hid_proj = None
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                def _set_class_embedding(
         | 
| 677 | 
            +
                    self,
         | 
| 678 | 
            +
                    class_embed_type: Optional[str],
         | 
| 679 | 
            +
                    act_fn: str,
         | 
| 680 | 
            +
                    num_class_embeds: Optional[int],
         | 
| 681 | 
            +
                    projection_class_embeddings_input_dim: Optional[int],
         | 
| 682 | 
            +
                    time_embed_dim: int,
         | 
| 683 | 
            +
                    timestep_input_dim: int,
         | 
| 684 | 
            +
                ):
         | 
| 685 | 
            +
                    if class_embed_type is None and num_class_embeds is not None:
         | 
| 686 | 
            +
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         | 
| 687 | 
            +
                    elif class_embed_type == "timestep":
         | 
| 688 | 
            +
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
         | 
| 689 | 
            +
                    elif class_embed_type == "identity":
         | 
| 690 | 
            +
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         | 
| 691 | 
            +
                    elif class_embed_type == "projection":
         | 
| 692 | 
            +
                        if projection_class_embeddings_input_dim is None:
         | 
| 693 | 
            +
                            raise ValueError(
         | 
| 694 | 
            +
                                "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
         | 
| 695 | 
            +
                            )
         | 
| 696 | 
            +
                        # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
         | 
| 697 | 
            +
                        # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
         | 
| 698 | 
            +
                        # 2. it projects from an arbitrary input dimension.
         | 
| 699 | 
            +
                        #
         | 
| 700 | 
            +
                        # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
         | 
| 701 | 
            +
                        # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
         | 
| 702 | 
            +
                        # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
         | 
| 703 | 
            +
                        self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 704 | 
            +
                    elif class_embed_type == "simple_projection":
         | 
| 705 | 
            +
                        if projection_class_embeddings_input_dim is None:
         | 
| 706 | 
            +
                            raise ValueError(
         | 
| 707 | 
            +
                                "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
         | 
| 708 | 
            +
                            )
         | 
| 709 | 
            +
                        self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 710 | 
            +
                    else:
         | 
| 711 | 
            +
                        self.class_embedding = None
         | 
| 712 | 
            +
             | 
| 713 | 
            +
                def _set_add_embedding(
         | 
| 714 | 
            +
                    self,
         | 
| 715 | 
            +
                    addition_embed_type: str,
         | 
| 716 | 
            +
                    addition_embed_type_num_heads: int,
         | 
| 717 | 
            +
                    addition_time_embed_dim: Optional[int],
         | 
| 718 | 
            +
                    flip_sin_to_cos: bool,
         | 
| 719 | 
            +
                    freq_shift: float,
         | 
| 720 | 
            +
                    cross_attention_dim: Optional[int],
         | 
| 721 | 
            +
                    encoder_hid_dim: Optional[int],
         | 
| 722 | 
            +
                    projection_class_embeddings_input_dim: Optional[int],
         | 
| 723 | 
            +
                    time_embed_dim: int,
         | 
| 724 | 
            +
                ):
         | 
| 725 | 
            +
                    if addition_embed_type == "text":
         | 
| 726 | 
            +
                        if encoder_hid_dim is not None:
         | 
| 727 | 
            +
                            text_time_embedding_from_dim = encoder_hid_dim
         | 
| 728 | 
            +
                        else:
         | 
| 729 | 
            +
                            text_time_embedding_from_dim = cross_attention_dim
         | 
| 730 | 
            +
             | 
| 731 | 
            +
                        self.add_embedding = TextTimeEmbedding(
         | 
| 732 | 
            +
                            text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
         | 
| 733 | 
            +
                        )
         | 
| 734 | 
            +
                    elif addition_embed_type == "text_image":
         | 
| 735 | 
            +
                        # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         | 
| 736 | 
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         | 
| 737 | 
            +
                        # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
         | 
| 738 | 
            +
                        self.add_embedding = TextImageTimeEmbedding(
         | 
| 739 | 
            +
                            text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
         | 
| 740 | 
            +
                        )
         | 
| 741 | 
            +
                    elif addition_embed_type == "text_time":
         | 
| 742 | 
            +
                        self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
         | 
| 743 | 
            +
                        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 744 | 
            +
                    elif addition_embed_type == "image":
         | 
| 745 | 
            +
                        # Kandinsky 2.2
         | 
| 746 | 
            +
                        self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         | 
| 747 | 
            +
                    elif addition_embed_type == "image_hint":
         | 
| 748 | 
            +
                        # Kandinsky 2.2 ControlNet
         | 
| 749 | 
            +
                        self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         | 
| 750 | 
            +
                    elif addition_embed_type is not None:
         | 
| 751 | 
            +
                        raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
         | 
| 754 | 
            +
                    if attention_type in ["gated", "gated-text-image"]:
         | 
| 755 | 
            +
                        positive_len = 768
         | 
| 756 | 
            +
                        if isinstance(cross_attention_dim, int):
         | 
| 757 | 
            +
                            positive_len = cross_attention_dim
         | 
| 758 | 
            +
                        elif isinstance(cross_attention_dim, (list, tuple)):
         | 
| 759 | 
            +
                            positive_len = cross_attention_dim[0]
         | 
| 760 | 
            +
             | 
| 761 | 
            +
                        feature_type = "text-only" if attention_type == "gated" else "text-image"
         | 
| 762 | 
            +
                        self.position_net = GLIGENTextBoundingboxProjection(
         | 
| 763 | 
            +
                            positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
         | 
| 764 | 
            +
                        )
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                @property
         | 
| 767 | 
            +
                def attn_processors(self) -> Dict[str, AttentionProcessor]:
         | 
| 768 | 
            +
                    r"""
         | 
| 769 | 
            +
                    Returns:
         | 
| 770 | 
            +
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         | 
| 771 | 
            +
                        indexed by its weight name.
         | 
| 772 | 
            +
                    """
         | 
| 773 | 
            +
                    # set recursively
         | 
| 774 | 
            +
                    processors = {}
         | 
| 775 | 
            +
             | 
| 776 | 
            +
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         | 
| 777 | 
            +
                        if hasattr(module, "get_processor"):
         | 
| 778 | 
            +
                            processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
         | 
| 779 | 
            +
             | 
| 780 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 781 | 
            +
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         | 
| 782 | 
            +
             | 
| 783 | 
            +
                        return processors
         | 
| 784 | 
            +
             | 
| 785 | 
            +
                    for name, module in self.named_children():
         | 
| 786 | 
            +
                        fn_recursive_add_processors(name, module, processors)
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                    return processors
         | 
| 789 | 
            +
             | 
| 790 | 
            +
                def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         | 
| 791 | 
            +
                    r"""
         | 
| 792 | 
            +
                    Sets the attention processor to use to compute attention.
         | 
| 793 | 
            +
             | 
| 794 | 
            +
                    Parameters:
         | 
| 795 | 
            +
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         | 
| 796 | 
            +
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         | 
| 797 | 
            +
                            for **all** `Attention` layers.
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         | 
| 800 | 
            +
                            processor. This is strongly recommended when setting trainable attention processors.
         | 
| 801 | 
            +
             | 
| 802 | 
            +
                    """
         | 
| 803 | 
            +
                    count = len(self.attn_processors.keys())
         | 
| 804 | 
            +
             | 
| 805 | 
            +
                    if isinstance(processor, dict) and len(processor) != count:
         | 
| 806 | 
            +
                        raise ValueError(
         | 
| 807 | 
            +
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         | 
| 808 | 
            +
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         | 
| 809 | 
            +
                        )
         | 
| 810 | 
            +
             | 
| 811 | 
            +
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         | 
| 812 | 
            +
                        if hasattr(module, "set_processor"):
         | 
| 813 | 
            +
                            if not isinstance(processor, dict):
         | 
| 814 | 
            +
                                module.set_processor(processor)
         | 
| 815 | 
            +
                            else:
         | 
| 816 | 
            +
                                module.set_processor(processor.pop(f"{name}.processor"))
         | 
| 817 | 
            +
             | 
| 818 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 819 | 
            +
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         | 
| 820 | 
            +
             | 
| 821 | 
            +
                    for name, module in self.named_children():
         | 
| 822 | 
            +
                        fn_recursive_attn_processor(name, module, processor)
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                def set_default_attn_processor(self):
         | 
| 825 | 
            +
                    """
         | 
| 826 | 
            +
                    Disables custom attention processors and sets the default attention implementation.
         | 
| 827 | 
            +
                    """
         | 
| 828 | 
            +
                    if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         | 
| 829 | 
            +
                        processor = AttnAddedKVProcessor()
         | 
| 830 | 
            +
                    elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         | 
| 831 | 
            +
                        processor = AttnProcessor()
         | 
| 832 | 
            +
                    else:
         | 
| 833 | 
            +
                        raise ValueError(
         | 
| 834 | 
            +
                            f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
         | 
| 835 | 
            +
                        )
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                    self.set_attn_processor(processor)
         | 
| 838 | 
            +
             | 
| 839 | 
            +
                def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
         | 
| 840 | 
            +
                    r"""
         | 
| 841 | 
            +
                    Enable sliced attention computation.
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                    When this option is enabled, the attention module splits the input tensor in slices to compute attention in
         | 
| 844 | 
            +
                    several steps. This is useful for saving some memory in exchange for a small decrease in speed.
         | 
| 845 | 
            +
             | 
| 846 | 
            +
                    Args:
         | 
| 847 | 
            +
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         | 
| 848 | 
            +
                            When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
         | 
| 849 | 
            +
                            `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
         | 
| 850 | 
            +
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         | 
| 851 | 
            +
                            must be a multiple of `slice_size`.
         | 
| 852 | 
            +
                    """
         | 
| 853 | 
            +
                    sliceable_head_dims = []
         | 
| 854 | 
            +
             | 
| 855 | 
            +
                    def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
         | 
| 856 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 857 | 
            +
                            sliceable_head_dims.append(module.sliceable_head_dim)
         | 
| 858 | 
            +
             | 
| 859 | 
            +
                        for child in module.children():
         | 
| 860 | 
            +
                            fn_recursive_retrieve_sliceable_dims(child)
         | 
| 861 | 
            +
             | 
| 862 | 
            +
                    # retrieve number of attention layers
         | 
| 863 | 
            +
                    for module in self.children():
         | 
| 864 | 
            +
                        fn_recursive_retrieve_sliceable_dims(module)
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                    num_sliceable_layers = len(sliceable_head_dims)
         | 
| 867 | 
            +
             | 
| 868 | 
            +
                    if slice_size == "auto":
         | 
| 869 | 
            +
                        # half the attention head size is usually a good trade-off between
         | 
| 870 | 
            +
                        # speed and memory
         | 
| 871 | 
            +
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         | 
| 872 | 
            +
                    elif slice_size == "max":
         | 
| 873 | 
            +
                        # make smallest slice possible
         | 
| 874 | 
            +
                        slice_size = num_sliceable_layers * [1]
         | 
| 875 | 
            +
             | 
| 876 | 
            +
                    slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         | 
| 877 | 
            +
             | 
| 878 | 
            +
                    if len(slice_size) != len(sliceable_head_dims):
         | 
| 879 | 
            +
                        raise ValueError(
         | 
| 880 | 
            +
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         | 
| 881 | 
            +
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         | 
| 882 | 
            +
                        )
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                    for i in range(len(slice_size)):
         | 
| 885 | 
            +
                        size = slice_size[i]
         | 
| 886 | 
            +
                        dim = sliceable_head_dims[i]
         | 
| 887 | 
            +
                        if size is not None and size > dim:
         | 
| 888 | 
            +
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         | 
| 889 | 
            +
             | 
| 890 | 
            +
                    # Recursively walk through all the children.
         | 
| 891 | 
            +
                    # Any children which exposes the set_attention_slice method
         | 
| 892 | 
            +
                    # gets the message
         | 
| 893 | 
            +
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         | 
| 894 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 895 | 
            +
                            module.set_attention_slice(slice_size.pop())
         | 
| 896 | 
            +
             | 
| 897 | 
            +
                        for child in module.children():
         | 
| 898 | 
            +
                            fn_recursive_set_attention_slice(child, slice_size)
         | 
| 899 | 
            +
             | 
| 900 | 
            +
                    reversed_slice_size = list(reversed(slice_size))
         | 
| 901 | 
            +
                    for module in self.children():
         | 
| 902 | 
            +
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 905 | 
            +
                    if hasattr(module, "gradient_checkpointing"):
         | 
| 906 | 
            +
                        module.gradient_checkpointing = value
         | 
| 907 | 
            +
             | 
| 908 | 
            +
                def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
         | 
| 909 | 
            +
                    r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
         | 
| 910 | 
            +
             | 
| 911 | 
            +
                    The suffixes after the scaling factors represent the stage blocks where they are being applied.
         | 
| 912 | 
            +
             | 
| 913 | 
            +
                    Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
         | 
| 914 | 
            +
                    are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
         | 
| 915 | 
            +
             | 
| 916 | 
            +
                    Args:
         | 
| 917 | 
            +
                        s1 (`float`):
         | 
| 918 | 
            +
                            Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
         | 
| 919 | 
            +
                            mitigate the "oversmoothing effect" in the enhanced denoising process.
         | 
| 920 | 
            +
                        s2 (`float`):
         | 
| 921 | 
            +
                            Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
         | 
| 922 | 
            +
                            mitigate the "oversmoothing effect" in the enhanced denoising process.
         | 
| 923 | 
            +
                        b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
         | 
| 924 | 
            +
                        b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
         | 
| 925 | 
            +
                    """
         | 
| 926 | 
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         | 
| 927 | 
            +
                        setattr(upsample_block, "s1", s1)
         | 
| 928 | 
            +
                        setattr(upsample_block, "s2", s2)
         | 
| 929 | 
            +
                        setattr(upsample_block, "b1", b1)
         | 
| 930 | 
            +
                        setattr(upsample_block, "b2", b2)
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                def disable_freeu(self):
         | 
| 933 | 
            +
                    """Disables the FreeU mechanism."""
         | 
| 934 | 
            +
                    freeu_keys = {"s1", "s2", "b1", "b2"}
         | 
| 935 | 
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         | 
| 936 | 
            +
                        for k in freeu_keys:
         | 
| 937 | 
            +
                            if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
         | 
| 938 | 
            +
                                setattr(upsample_block, k, None)
         | 
| 939 | 
            +
             | 
| 940 | 
            +
                def fuse_qkv_projections(self):
         | 
| 941 | 
            +
                    """
         | 
| 942 | 
            +
                    Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
         | 
| 943 | 
            +
                    are fused. For cross-attention modules, key and value projection matrices are fused.
         | 
| 944 | 
            +
             | 
| 945 | 
            +
                    <Tip warning={true}>
         | 
| 946 | 
            +
             | 
| 947 | 
            +
                    This API is 🧪 experimental.
         | 
| 948 | 
            +
             | 
| 949 | 
            +
                    </Tip>
         | 
| 950 | 
            +
                    """
         | 
| 951 | 
            +
                    self.original_attn_processors = None
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                    for _, attn_processor in self.attn_processors.items():
         | 
| 954 | 
            +
                        if "Added" in str(attn_processor.__class__.__name__):
         | 
| 955 | 
            +
                            raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
         | 
| 956 | 
            +
             | 
| 957 | 
            +
                    self.original_attn_processors = self.attn_processors
         | 
| 958 | 
            +
             | 
| 959 | 
            +
                    for module in self.modules():
         | 
| 960 | 
            +
                        if isinstance(module, Attention):
         | 
| 961 | 
            +
                            module.fuse_projections(fuse=True)
         | 
| 962 | 
            +
             | 
| 963 | 
            +
                def unfuse_qkv_projections(self):
         | 
| 964 | 
            +
                    """Disables the fused QKV projection if enabled.
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                    <Tip warning={true}>
         | 
| 967 | 
            +
             | 
| 968 | 
            +
                    This API is 🧪 experimental.
         | 
| 969 | 
            +
             | 
| 970 | 
            +
                    </Tip>
         | 
| 971 | 
            +
             | 
| 972 | 
            +
                    """
         | 
| 973 | 
            +
                    if self.original_attn_processors is not None:
         | 
| 974 | 
            +
                        self.set_attn_processor(self.original_attn_processors)
         | 
| 975 | 
            +
             | 
| 976 | 
            +
                def get_time_embed(
         | 
| 977 | 
            +
                    self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
         | 
| 978 | 
            +
                ) -> Optional[torch.Tensor]:
         | 
| 979 | 
            +
                    timesteps = timestep
         | 
| 980 | 
            +
                    if not torch.is_tensor(timesteps):
         | 
| 981 | 
            +
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         | 
| 982 | 
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         | 
| 983 | 
            +
                        is_mps = sample.device.type == "mps"
         | 
| 984 | 
            +
                        if isinstance(timestep, float):
         | 
| 985 | 
            +
                            dtype = torch.float32 if is_mps else torch.float64
         | 
| 986 | 
            +
                        else:
         | 
| 987 | 
            +
                            dtype = torch.int32 if is_mps else torch.int64
         | 
| 988 | 
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         | 
| 989 | 
            +
                    elif len(timesteps.shape) == 0:
         | 
| 990 | 
            +
                        timesteps = timesteps[None].to(sample.device)
         | 
| 991 | 
            +
             | 
| 992 | 
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 993 | 
            +
                    timesteps = timesteps.expand(sample.shape[0])
         | 
| 994 | 
            +
             | 
| 995 | 
            +
                    t_emb = self.time_proj(timesteps)
         | 
| 996 | 
            +
                    # `Timesteps` does not contain any weights and will always return f32 tensors
         | 
| 997 | 
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         | 
| 998 | 
            +
                    # there might be better ways to encapsulate this.
         | 
| 999 | 
            +
                    t_emb = t_emb.to(dtype=sample.dtype)
         | 
| 1000 | 
            +
                    return t_emb
         | 
| 1001 | 
            +
             | 
| 1002 | 
            +
                def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
         | 
| 1003 | 
            +
                    class_emb = None
         | 
| 1004 | 
            +
                    if self.class_embedding is not None:
         | 
| 1005 | 
            +
                        if class_labels is None:
         | 
| 1006 | 
            +
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         | 
| 1007 | 
            +
             | 
| 1008 | 
            +
                        if self.config.class_embed_type == "timestep":
         | 
| 1009 | 
            +
                            class_labels = self.time_proj(class_labels)
         | 
| 1010 | 
            +
             | 
| 1011 | 
            +
                            # `Timesteps` does not contain any weights and will always return f32 tensors
         | 
| 1012 | 
            +
                            # there might be better ways to encapsulate this.
         | 
| 1013 | 
            +
                            class_labels = class_labels.to(dtype=sample.dtype)
         | 
| 1014 | 
            +
             | 
| 1015 | 
            +
                        class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
         | 
| 1016 | 
            +
                    return class_emb
         | 
| 1017 | 
            +
             | 
| 1018 | 
            +
                def get_aug_embed(
         | 
| 1019 | 
            +
                    self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         | 
| 1020 | 
            +
                ) -> Optional[torch.Tensor]:
         | 
| 1021 | 
            +
                    aug_emb = None
         | 
| 1022 | 
            +
                    if self.config.addition_embed_type == "text":
         | 
| 1023 | 
            +
                        aug_emb = self.add_embedding(encoder_hidden_states)
         | 
| 1024 | 
            +
                    elif self.config.addition_embed_type == "text_image":
         | 
| 1025 | 
            +
                        # Kandinsky 2.1 - style
         | 
| 1026 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 1027 | 
            +
                            raise ValueError(
         | 
| 1028 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         | 
| 1029 | 
            +
                            )
         | 
| 1030 | 
            +
             | 
| 1031 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 1032 | 
            +
                        text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
         | 
| 1033 | 
            +
                        aug_emb = self.add_embedding(text_embs, image_embs)
         | 
| 1034 | 
            +
                    elif self.config.addition_embed_type == "text_time":
         | 
| 1035 | 
            +
                        # SDXL - style
         | 
| 1036 | 
            +
                        if "text_embeds" not in added_cond_kwargs:
         | 
| 1037 | 
            +
                            raise ValueError(
         | 
| 1038 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
         | 
| 1039 | 
            +
                            )
         | 
| 1040 | 
            +
                        text_embeds = added_cond_kwargs.get("text_embeds")
         | 
| 1041 | 
            +
                        if "time_ids" not in added_cond_kwargs:
         | 
| 1042 | 
            +
                            raise ValueError(
         | 
| 1043 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
         | 
| 1044 | 
            +
                            )
         | 
| 1045 | 
            +
                        time_ids = added_cond_kwargs.get("time_ids")
         | 
| 1046 | 
            +
                        time_embeds = self.add_time_proj(time_ids.flatten())
         | 
| 1047 | 
            +
                        time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
         | 
| 1048 | 
            +
                        add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
         | 
| 1049 | 
            +
                        add_embeds = add_embeds.to(emb.dtype)
         | 
| 1050 | 
            +
                        aug_emb = self.add_embedding(add_embeds)
         | 
| 1051 | 
            +
                    elif self.config.addition_embed_type == "image":
         | 
| 1052 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 1053 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 1054 | 
            +
                            raise ValueError(
         | 
| 1055 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         | 
| 1056 | 
            +
                            )
         | 
| 1057 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 1058 | 
            +
                        aug_emb = self.add_embedding(image_embs)
         | 
| 1059 | 
            +
                    elif self.config.addition_embed_type == "image_hint":
         | 
| 1060 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 1061 | 
            +
                        if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
         | 
| 1062 | 
            +
                            raise ValueError(
         | 
| 1063 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
         | 
| 1064 | 
            +
                            )
         | 
| 1065 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 1066 | 
            +
                        hint = added_cond_kwargs.get("hint")
         | 
| 1067 | 
            +
                        aug_emb = self.add_embedding(image_embs, hint)
         | 
| 1068 | 
            +
                    return aug_emb
         | 
| 1069 | 
            +
             | 
| 1070 | 
            +
                def process_encoder_hidden_states(
         | 
| 1071 | 
            +
                    self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         | 
| 1072 | 
            +
                ) -> torch.Tensor:
         | 
| 1073 | 
            +
                    if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
         | 
| 1074 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
         | 
| 1075 | 
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
         | 
| 1076 | 
            +
                        # Kandinsky 2.1 - style
         | 
| 1077 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 1078 | 
            +
                            raise ValueError(
         | 
| 1079 | 
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         | 
| 1080 | 
            +
                            )
         | 
| 1081 | 
            +
             | 
| 1082 | 
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         | 
| 1083 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
         | 
| 1084 | 
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
         | 
| 1085 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 1086 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 1087 | 
            +
                            raise ValueError(
         | 
| 1088 | 
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         | 
| 1089 | 
            +
                            )
         | 
| 1090 | 
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         | 
| 1091 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(image_embeds)
         | 
| 1092 | 
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
         | 
| 1093 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 1094 | 
            +
                            raise ValueError(
         | 
| 1095 | 
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         | 
| 1096 | 
            +
                            )
         | 
| 1097 | 
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         | 
| 1098 | 
            +
                        image_embeds = self.encoder_hid_proj(image_embeds)
         | 
| 1099 | 
            +
                        encoder_hidden_states = (encoder_hidden_states, image_embeds)
         | 
| 1100 | 
            +
                    return encoder_hidden_states
         | 
| 1101 | 
            +
             | 
| 1102 | 
            +
                def forward(
         | 
| 1103 | 
            +
                    self,
         | 
| 1104 | 
            +
                    sample: torch.Tensor,
         | 
| 1105 | 
            +
                    timestep: Union[torch.Tensor, float, int],
         | 
| 1106 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 1107 | 
            +
                    class_labels: Optional[torch.Tensor] = None,
         | 
| 1108 | 
            +
                    timestep_cond: Optional[torch.Tensor] = None,
         | 
| 1109 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1110 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 1111 | 
            +
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         | 
| 1112 | 
            +
                    down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         | 
| 1113 | 
            +
                    mid_block_additional_residual: Optional[torch.Tensor] = None,
         | 
| 1114 | 
            +
                    down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         | 
| 1115 | 
            +
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         | 
| 1116 | 
            +
                    controls: Optional[Dict[str, torch.Tensor]] = None,
         | 
| 1117 | 
            +
                    return_dict: bool = True,
         | 
| 1118 | 
            +
                ) -> Union[UNet2DConditionOutput, Tuple]:
         | 
| 1119 | 
            +
                    r"""
         | 
| 1120 | 
            +
                    The [`UNet2DConditionModel`] forward method.
         | 
| 1121 | 
            +
             | 
| 1122 | 
            +
                    Args:
         | 
| 1123 | 
            +
                        sample (`torch.Tensor`):
         | 
| 1124 | 
            +
                            The noisy input tensor with the following shape `(batch, channel, height, width)`.
         | 
| 1125 | 
            +
                        timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
         | 
| 1126 | 
            +
                        encoder_hidden_states (`torch.Tensor`):
         | 
| 1127 | 
            +
                            The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
         | 
| 1128 | 
            +
                        class_labels (`torch.Tensor`, *optional*, defaults to `None`):
         | 
| 1129 | 
            +
                            Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
         | 
| 1130 | 
            +
                        timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
         | 
| 1131 | 
            +
                            Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
         | 
| 1132 | 
            +
                            through the `self.time_embedding` layer to obtain the timestep embeddings.
         | 
| 1133 | 
            +
                        attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
         | 
| 1134 | 
            +
                            An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
         | 
| 1135 | 
            +
                            is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
         | 
| 1136 | 
            +
                            negative values to the attention scores corresponding to "discard" tokens.
         | 
| 1137 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 1138 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 1139 | 
            +
                            `self.processor` in
         | 
| 1140 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 1141 | 
            +
                        added_cond_kwargs: (`dict`, *optional*):
         | 
| 1142 | 
            +
                            A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
         | 
| 1143 | 
            +
                            are passed along to the UNet blocks.
         | 
| 1144 | 
            +
                        down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
         | 
| 1145 | 
            +
                            A tuple of tensors that if specified are added to the residuals of down unet blocks.
         | 
| 1146 | 
            +
                        mid_block_additional_residual: (`torch.Tensor`, *optional*):
         | 
| 1147 | 
            +
                            A tensor that if specified is added to the residual of the middle unet block.
         | 
| 1148 | 
            +
                        down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
         | 
| 1149 | 
            +
                            additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
         | 
| 1150 | 
            +
                        encoder_attention_mask (`torch.Tensor`):
         | 
| 1151 | 
            +
                            A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
         | 
| 1152 | 
            +
                            `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
         | 
| 1153 | 
            +
                            which adds large negative values to the attention scores corresponding to "discard" tokens.
         | 
| 1154 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 1155 | 
            +
                            Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
         | 
| 1156 | 
            +
                            tuple.
         | 
| 1157 | 
            +
             | 
| 1158 | 
            +
                    Returns:
         | 
| 1159 | 
            +
                        [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
         | 
| 1160 | 
            +
                            If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
         | 
| 1161 | 
            +
                            otherwise a `tuple` is returned where the first element is the sample tensor.
         | 
| 1162 | 
            +
                    """
         | 
| 1163 | 
            +
                    # By default samples have to be AT least a multiple of the overall upsampling factor.
         | 
| 1164 | 
            +
                    # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
         | 
| 1165 | 
            +
                    # However, the upsampling interpolation output size can be forced to fit any upsampling size
         | 
| 1166 | 
            +
                    # on the fly if necessary.
         | 
| 1167 | 
            +
                    default_overall_up_factor = 2**self.num_upsamplers
         | 
| 1168 | 
            +
             | 
| 1169 | 
            +
                    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
         | 
| 1170 | 
            +
                    forward_upsample_size = False
         | 
| 1171 | 
            +
                    upsample_size = None
         | 
| 1172 | 
            +
             | 
| 1173 | 
            +
                    for dim in sample.shape[-2:]:
         | 
| 1174 | 
            +
                        if dim % default_overall_up_factor != 0:
         | 
| 1175 | 
            +
                            # Forward upsample size to force interpolation output size.
         | 
| 1176 | 
            +
                            forward_upsample_size = True
         | 
| 1177 | 
            +
                            break
         | 
| 1178 | 
            +
             | 
| 1179 | 
            +
                    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
         | 
| 1180 | 
            +
                    # expects mask of shape:
         | 
| 1181 | 
            +
                    #   [batch, key_tokens]
         | 
| 1182 | 
            +
                    # adds singleton query_tokens dimension:
         | 
| 1183 | 
            +
                    #   [batch,                    1, key_tokens]
         | 
| 1184 | 
            +
                    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
         | 
| 1185 | 
            +
                    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
         | 
| 1186 | 
            +
                    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
         | 
| 1187 | 
            +
                    if attention_mask is not None:
         | 
| 1188 | 
            +
                        # assume that mask is expressed as:
         | 
| 1189 | 
            +
                        #   (1 = keep,      0 = discard)
         | 
| 1190 | 
            +
                        # convert mask into a bias that can be added to attention scores:
         | 
| 1191 | 
            +
                        #       (keep = +0,     discard = -10000.0)
         | 
| 1192 | 
            +
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         | 
| 1193 | 
            +
                        attention_mask = attention_mask.unsqueeze(1)
         | 
| 1194 | 
            +
             | 
| 1195 | 
            +
                    # convert encoder_attention_mask to a bias the same way we do for attention_mask
         | 
| 1196 | 
            +
                    if encoder_attention_mask is not None:
         | 
| 1197 | 
            +
                        encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
         | 
| 1198 | 
            +
                        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
         | 
| 1199 | 
            +
             | 
| 1200 | 
            +
                    # 0. center input if necessary
         | 
| 1201 | 
            +
                    if self.config.center_input_sample:
         | 
| 1202 | 
            +
                        sample = 2 * sample - 1.0
         | 
| 1203 | 
            +
             | 
| 1204 | 
            +
                    # 1. time
         | 
| 1205 | 
            +
                    t_emb = self.get_time_embed(sample=sample, timestep=timestep)
         | 
| 1206 | 
            +
                    emb = self.time_embedding(t_emb, timestep_cond)
         | 
| 1207 | 
            +
                    aug_emb = None
         | 
| 1208 | 
            +
             | 
| 1209 | 
            +
                    class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
         | 
| 1210 | 
            +
                    if class_emb is not None:
         | 
| 1211 | 
            +
                        if self.config.class_embeddings_concat:
         | 
| 1212 | 
            +
                            emb = torch.cat([emb, class_emb], dim=-1)
         | 
| 1213 | 
            +
                        else:
         | 
| 1214 | 
            +
                            emb = emb + class_emb
         | 
| 1215 | 
            +
             | 
| 1216 | 
            +
                    aug_emb = self.get_aug_embed(
         | 
| 1217 | 
            +
                        emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
         | 
| 1218 | 
            +
                    )
         | 
| 1219 | 
            +
                    if self.config.addition_embed_type == "image_hint":
         | 
| 1220 | 
            +
                        aug_emb, hint = aug_emb
         | 
| 1221 | 
            +
                        sample = torch.cat([sample, hint], dim=1)
         | 
| 1222 | 
            +
             | 
| 1223 | 
            +
                    emb = emb + aug_emb if aug_emb is not None else emb
         | 
| 1224 | 
            +
             | 
| 1225 | 
            +
                    if self.time_embed_act is not None:
         | 
| 1226 | 
            +
                        emb = self.time_embed_act(emb)
         | 
| 1227 | 
            +
             | 
| 1228 | 
            +
                    encoder_hidden_states = self.process_encoder_hidden_states(
         | 
| 1229 | 
            +
                        encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
         | 
| 1230 | 
            +
                    )
         | 
| 1231 | 
            +
             | 
| 1232 | 
            +
                    # 2. pre-process
         | 
| 1233 | 
            +
                    sample = self.conv_in(sample)
         | 
| 1234 | 
            +
             | 
| 1235 | 
            +
                    # 2.5 GLIGEN position net
         | 
| 1236 | 
            +
                    if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
         | 
| 1237 | 
            +
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         | 
| 1238 | 
            +
                        gligen_args = cross_attention_kwargs.pop("gligen")
         | 
| 1239 | 
            +
                        cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
         | 
| 1240 | 
            +
             | 
| 1241 | 
            +
                    # 3. down
         | 
| 1242 | 
            +
                    # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
         | 
| 1243 | 
            +
                    # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
         | 
| 1244 | 
            +
                    if cross_attention_kwargs is not None:
         | 
| 1245 | 
            +
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         | 
| 1246 | 
            +
                        lora_scale = cross_attention_kwargs.pop("scale", 1.0)
         | 
| 1247 | 
            +
                    else:
         | 
| 1248 | 
            +
                        lora_scale = 1.0
         | 
| 1249 | 
            +
             | 
| 1250 | 
            +
                    if USE_PEFT_BACKEND:
         | 
| 1251 | 
            +
                        # weight the lora layers by setting `lora_scale` for each PEFT layer
         | 
| 1252 | 
            +
                        scale_lora_layers(self, lora_scale)
         | 
| 1253 | 
            +
             | 
| 1254 | 
            +
                    is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
         | 
| 1255 | 
            +
                    is_controlnext = controls is not None
         | 
| 1256 | 
            +
                    # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
         | 
| 1257 | 
            +
                    is_adapter = down_intrablock_additional_residuals is not None
         | 
| 1258 | 
            +
                    # maintain backward compatibility for legacy usage, where
         | 
| 1259 | 
            +
                    #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
         | 
| 1260 | 
            +
                    #       but can only use one or the other
         | 
| 1261 | 
            +
                    if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
         | 
| 1262 | 
            +
                        deprecate(
         | 
| 1263 | 
            +
                            "T2I should not use down_block_additional_residuals",
         | 
| 1264 | 
            +
                            "1.3.0",
         | 
| 1265 | 
            +
                            "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
         | 
| 1266 | 
            +
                                   and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
         | 
| 1267 | 
            +
                                   for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
         | 
| 1268 | 
            +
                            standard_warn=False,
         | 
| 1269 | 
            +
                        )
         | 
| 1270 | 
            +
                        down_intrablock_additional_residuals = down_block_additional_residuals
         | 
| 1271 | 
            +
                        is_adapter = True
         | 
| 1272 | 
            +
             | 
| 1273 | 
            +
                    down_block_res_samples = (sample,)
         | 
| 1274 | 
            +
             | 
| 1275 | 
            +
                    if is_controlnext:
         | 
| 1276 | 
            +
                        scale = controls['scale']
         | 
| 1277 | 
            +
                        controls = controls['out'].to(sample)
         | 
| 1278 | 
            +
                        mean_latents, std_latents = torch.mean(sample, dim=(1, 2, 3), keepdim=True), torch.std(sample, dim=(1, 2, 3), keepdim=True)
         | 
| 1279 | 
            +
                        mean_control, std_control = torch.mean(controls, dim=(1, 2, 3), keepdim=True), torch.std(controls, dim=(1, 2, 3), keepdim=True)
         | 
| 1280 | 
            +
                        controls = (controls - mean_control) * (std_latents / (std_control + 1e-12)) + mean_latents
         | 
| 1281 | 
            +
                        controls = nn.functional.adaptive_avg_pool2d(controls, sample.shape[-2:])
         | 
| 1282 | 
            +
                        sample = sample + controls * scale
         | 
| 1283 | 
            +
             | 
| 1284 | 
            +
                    for i, downsample_block in enumerate(self.down_blocks):
         | 
| 1285 | 
            +
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         | 
| 1286 | 
            +
                            # For t2i-adapter CrossAttnDownBlock2D
         | 
| 1287 | 
            +
                            additional_residuals = {}
         | 
| 1288 | 
            +
                            if is_adapter and len(down_intrablock_additional_residuals) > 0:
         | 
| 1289 | 
            +
                                additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
         | 
| 1290 | 
            +
             | 
| 1291 | 
            +
                            sample, res_samples = downsample_block(
         | 
| 1292 | 
            +
                                hidden_states=sample,
         | 
| 1293 | 
            +
                                temb=emb,
         | 
| 1294 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 1295 | 
            +
                                attention_mask=attention_mask,
         | 
| 1296 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 1297 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 1298 | 
            +
                                **additional_residuals,
         | 
| 1299 | 
            +
                            )
         | 
| 1300 | 
            +
                        else:
         | 
| 1301 | 
            +
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
         | 
| 1302 | 
            +
                            if is_adapter and len(down_intrablock_additional_residuals) > 0:
         | 
| 1303 | 
            +
                                sample += down_intrablock_additional_residuals.pop(0)
         | 
| 1304 | 
            +
             | 
| 1305 | 
            +
                        down_block_res_samples += res_samples
         | 
| 1306 | 
            +
             | 
| 1307 | 
            +
                    if is_controlnet:
         | 
| 1308 | 
            +
                        new_down_block_res_samples = ()
         | 
| 1309 | 
            +
             | 
| 1310 | 
            +
                        for down_block_res_sample, down_block_additional_residual in zip(
         | 
| 1311 | 
            +
                            down_block_res_samples, down_block_additional_residuals
         | 
| 1312 | 
            +
                        ):
         | 
| 1313 | 
            +
                            down_block_res_sample = down_block_res_sample + down_block_additional_residual
         | 
| 1314 | 
            +
                            new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
         | 
| 1315 | 
            +
             | 
| 1316 | 
            +
                        down_block_res_samples = new_down_block_res_samples
         | 
| 1317 | 
            +
             | 
| 1318 | 
            +
                    # 4. mid
         | 
| 1319 | 
            +
                    if self.mid_block is not None:
         | 
| 1320 | 
            +
                        if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
         | 
| 1321 | 
            +
                            sample = self.mid_block(
         | 
| 1322 | 
            +
                                sample,
         | 
| 1323 | 
            +
                                emb,
         | 
| 1324 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 1325 | 
            +
                                attention_mask=attention_mask,
         | 
| 1326 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 1327 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 1328 | 
            +
                            )
         | 
| 1329 | 
            +
                        else:
         | 
| 1330 | 
            +
                            sample = self.mid_block(sample, emb)
         | 
| 1331 | 
            +
             | 
| 1332 | 
            +
                        # To support T2I-Adapter-XL
         | 
| 1333 | 
            +
                        if (
         | 
| 1334 | 
            +
                            is_adapter
         | 
| 1335 | 
            +
                            and len(down_intrablock_additional_residuals) > 0
         | 
| 1336 | 
            +
                            and sample.shape == down_intrablock_additional_residuals[0].shape
         | 
| 1337 | 
            +
                        ):
         | 
| 1338 | 
            +
                            sample += down_intrablock_additional_residuals.pop(0)
         | 
| 1339 | 
            +
             | 
| 1340 | 
            +
                    if is_controlnet:
         | 
| 1341 | 
            +
                        sample = sample + mid_block_additional_residual
         | 
| 1342 | 
            +
             | 
| 1343 | 
            +
                    # 5. up
         | 
| 1344 | 
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         | 
| 1345 | 
            +
                        is_final_block = i == len(self.up_blocks) - 1
         | 
| 1346 | 
            +
             | 
| 1347 | 
            +
                        res_samples = down_block_res_samples[-len(upsample_block.resnets):]
         | 
| 1348 | 
            +
                        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
         | 
| 1349 | 
            +
             | 
| 1350 | 
            +
                        # if we have not reached the final block and need to forward the
         | 
| 1351 | 
            +
                        # upsample size, we do it here
         | 
| 1352 | 
            +
                        if not is_final_block and forward_upsample_size:
         | 
| 1353 | 
            +
                            upsample_size = down_block_res_samples[-1].shape[2:]
         | 
| 1354 | 
            +
             | 
| 1355 | 
            +
                        if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
         | 
| 1356 | 
            +
                            sample = upsample_block(
         | 
| 1357 | 
            +
                                hidden_states=sample,
         | 
| 1358 | 
            +
                                temb=emb,
         | 
| 1359 | 
            +
                                res_hidden_states_tuple=res_samples,
         | 
| 1360 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 1361 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 1362 | 
            +
                                upsample_size=upsample_size,
         | 
| 1363 | 
            +
                                attention_mask=attention_mask,
         | 
| 1364 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 1365 | 
            +
                            )
         | 
| 1366 | 
            +
                        else:
         | 
| 1367 | 
            +
                            sample = upsample_block(
         | 
| 1368 | 
            +
                                hidden_states=sample,
         | 
| 1369 | 
            +
                                temb=emb,
         | 
| 1370 | 
            +
                                res_hidden_states_tuple=res_samples,
         | 
| 1371 | 
            +
                                upsample_size=upsample_size,
         | 
| 1372 | 
            +
                            )
         | 
| 1373 | 
            +
             | 
| 1374 | 
            +
                    # 6. post-process
         | 
| 1375 | 
            +
                    if self.conv_norm_out:
         | 
| 1376 | 
            +
                        sample = self.conv_norm_out(sample)
         | 
| 1377 | 
            +
                        sample = self.conv_act(sample)
         | 
| 1378 | 
            +
                    sample = self.conv_out(sample)
         | 
| 1379 | 
            +
             | 
| 1380 | 
            +
                    if USE_PEFT_BACKEND:
         | 
| 1381 | 
            +
                        # remove `lora_scale` from each PEFT layer
         | 
| 1382 | 
            +
                        unscale_lora_layers(self, lora_scale)
         | 
| 1383 | 
            +
             | 
| 1384 | 
            +
                    if not return_dict:
         | 
| 1385 | 
            +
                        return (sample,)
         | 
| 1386 | 
            +
             | 
| 1387 | 
            +
                    return UNet2DConditionOutput(sample=sample)
         | 
    	
        pipeline/pipeline_controlnext.py
    ADDED
    
    | @@ -0,0 +1,1378 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import inspect
         | 
| 16 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         | 
| 17 | 
            +
            from packaging import version
         | 
| 18 | 
            +
            import torch
         | 
| 19 | 
            +
            from transformers import (
         | 
| 20 | 
            +
                CLIPImageProcessor,
         | 
| 21 | 
            +
                CLIPTextModel,
         | 
| 22 | 
            +
                CLIPTextModelWithProjection,
         | 
| 23 | 
            +
                CLIPTokenizer,
         | 
| 24 | 
            +
                CLIPVisionModelWithProjection,
         | 
| 25 | 
            +
            )
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
         | 
| 28 | 
            +
            from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
         | 
| 29 | 
            +
            from diffusers.loaders import (
         | 
| 30 | 
            +
                FromSingleFileMixin,
         | 
| 31 | 
            +
                IPAdapterMixin,
         | 
| 32 | 
            +
                StableDiffusionXLLoraLoaderMixin,
         | 
| 33 | 
            +
                TextualInversionLoaderMixin,
         | 
| 34 | 
            +
            )
         | 
| 35 | 
            +
            from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
         | 
| 36 | 
            +
            from diffusers.models.attention_processor import (
         | 
| 37 | 
            +
                AttnProcessor2_0,
         | 
| 38 | 
            +
                FusedAttnProcessor2_0,
         | 
| 39 | 
            +
                LoRAAttnProcessor2_0,
         | 
| 40 | 
            +
                LoRAXFormersAttnProcessor,
         | 
| 41 | 
            +
                XFormersAttnProcessor,
         | 
| 42 | 
            +
            )
         | 
| 43 | 
            +
            from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
         | 
| 44 | 
            +
            from models.controlnet import ControlNetModel
         | 
| 45 | 
            +
            from diffusers.models.lora import adjust_lora_scale_text_encoder
         | 
| 46 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 47 | 
            +
            from diffusers.utils import (
         | 
| 48 | 
            +
                USE_PEFT_BACKEND,
         | 
| 49 | 
            +
                deprecate,
         | 
| 50 | 
            +
                is_invisible_watermark_available,
         | 
| 51 | 
            +
                is_torch_xla_available,
         | 
| 52 | 
            +
                logging,
         | 
| 53 | 
            +
                replace_example_docstring,
         | 
| 54 | 
            +
                scale_lora_layers,
         | 
| 55 | 
            +
                unscale_lora_layers,
         | 
| 56 | 
            +
            )
         | 
| 57 | 
            +
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 58 | 
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
         | 
| 59 | 
            +
            from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            if is_invisible_watermark_available():
         | 
| 62 | 
            +
                from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            if is_torch_xla_available():
         | 
| 65 | 
            +
                import torch_xla.core.xla_model as xm
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                XLA_AVAILABLE = True
         | 
| 68 | 
            +
            else:
         | 
| 69 | 
            +
                XLA_AVAILABLE = False
         | 
| 70 | 
            +
             | 
| 71 | 
            +
             | 
| 72 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            EXAMPLE_DOC_STRING = """
         | 
| 75 | 
            +
                Examples:
         | 
| 76 | 
            +
                    ```py
         | 
| 77 | 
            +
                    >>> import torch
         | 
| 78 | 
            +
                    >>> from diffusers import StableDiffusionXLPipeline
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    >>> pipe = StableDiffusionXLPipeline.from_pretrained(
         | 
| 81 | 
            +
                    ...     "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
         | 
| 82 | 
            +
                    ... )
         | 
| 83 | 
            +
                    >>> pipe = pipe.to("cuda")
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    >>> prompt = "a photo of an astronaut riding a horse on mars"
         | 
| 86 | 
            +
                    >>> image = pipe(prompt).images[0]
         | 
| 87 | 
            +
                    ```
         | 
| 88 | 
            +
            """
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
         | 
| 92 | 
            +
            def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
         | 
| 93 | 
            +
                """
         | 
| 94 | 
            +
                Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
         | 
| 95 | 
            +
                Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
         | 
| 96 | 
            +
                """
         | 
| 97 | 
            +
                std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
         | 
| 98 | 
            +
                std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
         | 
| 99 | 
            +
                # rescale the results from guidance (fixes overexposure)
         | 
| 100 | 
            +
                noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
         | 
| 101 | 
            +
                # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
         | 
| 102 | 
            +
                noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
         | 
| 103 | 
            +
                return noise_cfg
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
         | 
| 107 | 
            +
            def retrieve_timesteps(
         | 
| 108 | 
            +
                scheduler,
         | 
| 109 | 
            +
                num_inference_steps: Optional[int] = None,
         | 
| 110 | 
            +
                device: Optional[Union[str, torch.device]] = None,
         | 
| 111 | 
            +
                timesteps: Optional[List[int]] = None,
         | 
| 112 | 
            +
                sigmas: Optional[List[float]] = None,
         | 
| 113 | 
            +
                **kwargs,
         | 
| 114 | 
            +
            ):
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
                Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
         | 
| 117 | 
            +
                custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                Args:
         | 
| 120 | 
            +
                    scheduler (`SchedulerMixin`):
         | 
| 121 | 
            +
                        The scheduler to get timesteps from.
         | 
| 122 | 
            +
                    num_inference_steps (`int`):
         | 
| 123 | 
            +
                        The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
         | 
| 124 | 
            +
                        must be `None`.
         | 
| 125 | 
            +
                    device (`str` or `torch.device`, *optional*):
         | 
| 126 | 
            +
                        The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
         | 
| 127 | 
            +
                    timesteps (`List[int]`, *optional*):
         | 
| 128 | 
            +
                        Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
         | 
| 129 | 
            +
                        `num_inference_steps` and `sigmas` must be `None`.
         | 
| 130 | 
            +
                    sigmas (`List[float]`, *optional*):
         | 
| 131 | 
            +
                        Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
         | 
| 132 | 
            +
                        `num_inference_steps` and `timesteps` must be `None`.
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                Returns:
         | 
| 135 | 
            +
                    `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
         | 
| 136 | 
            +
                    second element is the number of inference steps.
         | 
| 137 | 
            +
                """
         | 
| 138 | 
            +
                if timesteps is not None and sigmas is not None:
         | 
| 139 | 
            +
                    raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
         | 
| 140 | 
            +
                if timesteps is not None:
         | 
| 141 | 
            +
                    accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 142 | 
            +
                    if not accepts_timesteps:
         | 
| 143 | 
            +
                        raise ValueError(
         | 
| 144 | 
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 145 | 
            +
                            f" timestep schedules. Please check whether you are using the correct scheduler."
         | 
| 146 | 
            +
                        )
         | 
| 147 | 
            +
                    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
         | 
| 148 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 149 | 
            +
                    num_inference_steps = len(timesteps)
         | 
| 150 | 
            +
                elif sigmas is not None:
         | 
| 151 | 
            +
                    accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 152 | 
            +
                    if not accept_sigmas:
         | 
| 153 | 
            +
                        raise ValueError(
         | 
| 154 | 
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 155 | 
            +
                            f" sigmas schedules. Please check whether you are using the correct scheduler."
         | 
| 156 | 
            +
                        )
         | 
| 157 | 
            +
                    scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
         | 
| 158 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 159 | 
            +
                    num_inference_steps = len(timesteps)
         | 
| 160 | 
            +
                else:
         | 
| 161 | 
            +
                    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         | 
| 162 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 163 | 
            +
                return timesteps, num_inference_steps
         | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
            class StableDiffusionXLControlNeXtPipeline(
         | 
| 167 | 
            +
                DiffusionPipeline,
         | 
| 168 | 
            +
                StableDiffusionMixin,
         | 
| 169 | 
            +
                FromSingleFileMixin,
         | 
| 170 | 
            +
                StableDiffusionXLLoraLoaderMixin,
         | 
| 171 | 
            +
                TextualInversionLoaderMixin,
         | 
| 172 | 
            +
                IPAdapterMixin,
         | 
| 173 | 
            +
            ):
         | 
| 174 | 
            +
                r"""
         | 
| 175 | 
            +
                Pipeline for text-to-image generation using Stable Diffusion XL.
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
         | 
| 178 | 
            +
                library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                The pipeline also inherits the following loading methods:
         | 
| 181 | 
            +
                    - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
         | 
| 182 | 
            +
                    - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
         | 
| 183 | 
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
         | 
| 184 | 
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
         | 
| 185 | 
            +
                    - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                Args:
         | 
| 188 | 
            +
                    vae ([`AutoencoderKL`]):
         | 
| 189 | 
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         | 
| 190 | 
            +
                    text_encoder ([`CLIPTextModel`]):
         | 
| 191 | 
            +
                        Frozen text-encoder. Stable Diffusion XL uses the text portion of
         | 
| 192 | 
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
         | 
| 193 | 
            +
                        the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
         | 
| 194 | 
            +
                    text_encoder_2 ([` CLIPTextModelWithProjection`]):
         | 
| 195 | 
            +
                        Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
         | 
| 196 | 
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
         | 
| 197 | 
            +
                        specifically the
         | 
| 198 | 
            +
                        [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
         | 
| 199 | 
            +
                        variant.
         | 
| 200 | 
            +
                    tokenizer (`CLIPTokenizer`):
         | 
| 201 | 
            +
                        Tokenizer of class
         | 
| 202 | 
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         | 
| 203 | 
            +
                    tokenizer_2 (`CLIPTokenizer`):
         | 
| 204 | 
            +
                        Second Tokenizer of class
         | 
| 205 | 
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         | 
| 206 | 
            +
                    unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
         | 
| 207 | 
            +
                    scheduler ([`SchedulerMixin`]):
         | 
| 208 | 
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         | 
| 209 | 
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         | 
| 210 | 
            +
                    force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
         | 
| 211 | 
            +
                        Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
         | 
| 212 | 
            +
                        `stabilityai/stable-diffusion-xl-base-1-0`.
         | 
| 213 | 
            +
                    add_watermarker (`bool`, *optional*):
         | 
| 214 | 
            +
                        Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
         | 
| 215 | 
            +
                        watermark output images. If not defined, it will default to True if the package is installed, otherwise no
         | 
| 216 | 
            +
                        watermarker will be used.
         | 
| 217 | 
            +
                """
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
         | 
| 220 | 
            +
                _optional_components = [
         | 
| 221 | 
            +
                    "tokenizer",
         | 
| 222 | 
            +
                    "tokenizer_2",
         | 
| 223 | 
            +
                    "text_encoder",
         | 
| 224 | 
            +
                    "text_encoder_2",
         | 
| 225 | 
            +
                    "image_encoder",
         | 
| 226 | 
            +
                    "feature_extractor",
         | 
| 227 | 
            +
                ]
         | 
| 228 | 
            +
                _callback_tensor_inputs = [
         | 
| 229 | 
            +
                    "latents",
         | 
| 230 | 
            +
                    "prompt_embeds",
         | 
| 231 | 
            +
                    "negative_prompt_embeds",
         | 
| 232 | 
            +
                    "add_text_embeds",
         | 
| 233 | 
            +
                    "add_time_ids",
         | 
| 234 | 
            +
                    "negative_pooled_prompt_embeds",
         | 
| 235 | 
            +
                    "negative_add_time_ids",
         | 
| 236 | 
            +
                ]
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                def __init__(
         | 
| 239 | 
            +
                    self,
         | 
| 240 | 
            +
                    vae: AutoencoderKL,
         | 
| 241 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 242 | 
            +
                    text_encoder_2: CLIPTextModelWithProjection,
         | 
| 243 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 244 | 
            +
                    tokenizer_2: CLIPTokenizer,
         | 
| 245 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 246 | 
            +
                    scheduler: KarrasDiffusionSchedulers,
         | 
| 247 | 
            +
                    controlnet: Optional[Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel]] = None,
         | 
| 248 | 
            +
                    image_encoder: CLIPVisionModelWithProjection = None,
         | 
| 249 | 
            +
                    feature_extractor: CLIPImageProcessor = None,
         | 
| 250 | 
            +
                    force_zeros_for_empty_prompt: bool = True,
         | 
| 251 | 
            +
                    add_watermarker: Optional[bool] = None,
         | 
| 252 | 
            +
                ):
         | 
| 253 | 
            +
                    super().__init__()
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                    self.register_modules(
         | 
| 256 | 
            +
                        vae=vae,
         | 
| 257 | 
            +
                        text_encoder=text_encoder,
         | 
| 258 | 
            +
                        text_encoder_2=text_encoder_2,
         | 
| 259 | 
            +
                        tokenizer=tokenizer,
         | 
| 260 | 
            +
                        tokenizer_2=tokenizer_2,
         | 
| 261 | 
            +
                        unet=unet,
         | 
| 262 | 
            +
                        scheduler=scheduler,
         | 
| 263 | 
            +
                        image_encoder=image_encoder,
         | 
| 264 | 
            +
                        feature_extractor=feature_extractor,
         | 
| 265 | 
            +
                        controlnet=controlnet,
         | 
| 266 | 
            +
                    )
         | 
| 267 | 
            +
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         | 
| 268 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 269 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         | 
| 270 | 
            +
                    self.control_image_processor = VaeImageProcessor(
         | 
| 271 | 
            +
                        vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
         | 
| 272 | 
            +
                    )
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    self.default_sample_size = self.unet.config.sample_size
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    if add_watermarker:
         | 
| 279 | 
            +
                        self.watermark = StableDiffusionXLWatermarker()
         | 
| 280 | 
            +
                    else:
         | 
| 281 | 
            +
                        self.watermark = None
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                def prepare_image(
         | 
| 284 | 
            +
                    self,
         | 
| 285 | 
            +
                    image,
         | 
| 286 | 
            +
                    width,
         | 
| 287 | 
            +
                    height,
         | 
| 288 | 
            +
                    batch_size,
         | 
| 289 | 
            +
                    num_images_per_prompt,
         | 
| 290 | 
            +
                    device,
         | 
| 291 | 
            +
                    dtype,
         | 
| 292 | 
            +
                    do_classifier_free_guidance=False,
         | 
| 293 | 
            +
                    guess_mode=False,
         | 
| 294 | 
            +
                ):
         | 
| 295 | 
            +
                    image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
         | 
| 296 | 
            +
                    image_batch_size = image.shape[0]
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    if image_batch_size == 1:
         | 
| 299 | 
            +
                        repeat_by = batch_size
         | 
| 300 | 
            +
                    else:
         | 
| 301 | 
            +
                        # image batch size is the same as prompt batch size
         | 
| 302 | 
            +
                        repeat_by = num_images_per_prompt
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    image = image.repeat_interleave(repeat_by, dim=0)
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    if do_classifier_free_guidance and not guess_mode:
         | 
| 309 | 
            +
                        image = torch.cat([image] * 2)
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    return image
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                def encode_prompt(
         | 
| 314 | 
            +
                    self,
         | 
| 315 | 
            +
                    prompt: str,
         | 
| 316 | 
            +
                    prompt_2: Optional[str] = None,
         | 
| 317 | 
            +
                    device: Optional[torch.device] = None,
         | 
| 318 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 319 | 
            +
                    do_classifier_free_guidance: bool = True,
         | 
| 320 | 
            +
                    negative_prompt: Optional[str] = None,
         | 
| 321 | 
            +
                    negative_prompt_2: Optional[str] = None,
         | 
| 322 | 
            +
                    prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 323 | 
            +
                    negative_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 324 | 
            +
                    pooled_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 325 | 
            +
                    negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 326 | 
            +
                    lora_scale: Optional[float] = None,
         | 
| 327 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 328 | 
            +
                ):
         | 
| 329 | 
            +
                    r"""
         | 
| 330 | 
            +
                    Encodes the prompt into text encoder hidden states.
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    Args:
         | 
| 333 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 334 | 
            +
                            prompt to be encoded
         | 
| 335 | 
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 336 | 
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         | 
| 337 | 
            +
                            used in both text-encoders
         | 
| 338 | 
            +
                        device: (`torch.device`):
         | 
| 339 | 
            +
                            torch device
         | 
| 340 | 
            +
                        num_images_per_prompt (`int`):
         | 
| 341 | 
            +
                            number of images that should be generated per prompt
         | 
| 342 | 
            +
                        do_classifier_free_guidance (`bool`):
         | 
| 343 | 
            +
                            whether to use classifier free guidance or not
         | 
| 344 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 345 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 346 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 347 | 
            +
                            less than `1`).
         | 
| 348 | 
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 349 | 
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         | 
| 350 | 
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
         | 
| 351 | 
            +
                        prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 352 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 353 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 354 | 
            +
                        negative_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 355 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 356 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 357 | 
            +
                            argument.
         | 
| 358 | 
            +
                        pooled_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 359 | 
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         | 
| 360 | 
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         | 
| 361 | 
            +
                        negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 362 | 
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 363 | 
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         | 
| 364 | 
            +
                            input argument.
         | 
| 365 | 
            +
                        lora_scale (`float`, *optional*):
         | 
| 366 | 
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         | 
| 367 | 
            +
                        clip_skip (`int`, *optional*):
         | 
| 368 | 
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 369 | 
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 370 | 
            +
                    """
         | 
| 371 | 
            +
                    device = device or self._execution_device
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    # set lora scale so that monkey patched LoRA
         | 
| 374 | 
            +
                    # function of text encoder can correctly access it
         | 
| 375 | 
            +
                    if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
         | 
| 376 | 
            +
                        self._lora_scale = lora_scale
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                        # dynamically adjust the LoRA scale
         | 
| 379 | 
            +
                        if self.text_encoder is not None:
         | 
| 380 | 
            +
                            if not USE_PEFT_BACKEND:
         | 
| 381 | 
            +
                                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
         | 
| 382 | 
            +
                            else:
         | 
| 383 | 
            +
                                scale_lora_layers(self.text_encoder, lora_scale)
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                        if self.text_encoder_2 is not None:
         | 
| 386 | 
            +
                            if not USE_PEFT_BACKEND:
         | 
| 387 | 
            +
                                adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
         | 
| 388 | 
            +
                            else:
         | 
| 389 | 
            +
                                scale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    if prompt is not None:
         | 
| 394 | 
            +
                        batch_size = len(prompt)
         | 
| 395 | 
            +
                    else:
         | 
| 396 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    # Define tokenizers and text encoders
         | 
| 399 | 
            +
                    tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
         | 
| 400 | 
            +
                    text_encoders = (
         | 
| 401 | 
            +
                        [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
         | 
| 402 | 
            +
                    )
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    if prompt_embeds is None:
         | 
| 405 | 
            +
                        prompt_2 = prompt_2 or prompt
         | 
| 406 | 
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                        # textual inversion: process multi-vector tokens if necessary
         | 
| 409 | 
            +
                        prompt_embeds_list = []
         | 
| 410 | 
            +
                        prompts = [prompt, prompt_2]
         | 
| 411 | 
            +
                        for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
         | 
| 412 | 
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         | 
| 413 | 
            +
                                prompt = self.maybe_convert_prompt(prompt, tokenizer)
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                            text_inputs = tokenizer(
         | 
| 416 | 
            +
                                prompt,
         | 
| 417 | 
            +
                                padding="max_length",
         | 
| 418 | 
            +
                                max_length=tokenizer.model_max_length,
         | 
| 419 | 
            +
                                truncation=True,
         | 
| 420 | 
            +
                                return_tensors="pt",
         | 
| 421 | 
            +
                            )
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                            text_input_ids = text_inputs.input_ids
         | 
| 424 | 
            +
                            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
         | 
| 427 | 
            +
                                text_input_ids, untruncated_ids
         | 
| 428 | 
            +
                            ):
         | 
| 429 | 
            +
                                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1: -1])
         | 
| 430 | 
            +
                                logger.warning(
         | 
| 431 | 
            +
                                    "The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 432 | 
            +
                                    f" {tokenizer.model_max_length} tokens: {removed_text}"
         | 
| 433 | 
            +
                                )
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                            prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         | 
| 438 | 
            +
                            pooled_prompt_embeds = prompt_embeds[0]
         | 
| 439 | 
            +
                            if clip_skip is None:
         | 
| 440 | 
            +
                                prompt_embeds = prompt_embeds.hidden_states[-2]
         | 
| 441 | 
            +
                            else:
         | 
| 442 | 
            +
                                # "2" because SDXL always indexes from the penultimate layer.
         | 
| 443 | 
            +
                                prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                            prompt_embeds_list.append(prompt_embeds)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                    # get unconditional embeddings for classifier free guidance
         | 
| 450 | 
            +
                    zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
         | 
| 451 | 
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
         | 
| 452 | 
            +
                        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
         | 
| 453 | 
            +
                        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
         | 
| 454 | 
            +
                    elif do_classifier_free_guidance and negative_prompt_embeds is None:
         | 
| 455 | 
            +
                        negative_prompt = negative_prompt or ""
         | 
| 456 | 
            +
                        negative_prompt_2 = negative_prompt_2 or negative_prompt
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                        # normalize str to list
         | 
| 459 | 
            +
                        negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
         | 
| 460 | 
            +
                        negative_prompt_2 = (
         | 
| 461 | 
            +
                            batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
         | 
| 462 | 
            +
                        )
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                        uncond_tokens: List[str]
         | 
| 465 | 
            +
                        if prompt is not None and type(prompt) is not type(negative_prompt):
         | 
| 466 | 
            +
                            raise TypeError(
         | 
| 467 | 
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         | 
| 468 | 
            +
                                f" {type(prompt)}."
         | 
| 469 | 
            +
                            )
         | 
| 470 | 
            +
                        elif batch_size != len(negative_prompt):
         | 
| 471 | 
            +
                            raise ValueError(
         | 
| 472 | 
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         | 
| 473 | 
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         | 
| 474 | 
            +
                                " the batch size of `prompt`."
         | 
| 475 | 
            +
                            )
         | 
| 476 | 
            +
                        else:
         | 
| 477 | 
            +
                            uncond_tokens = [negative_prompt, negative_prompt_2]
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                        negative_prompt_embeds_list = []
         | 
| 480 | 
            +
                        for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
         | 
| 481 | 
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         | 
| 482 | 
            +
                                negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                            max_length = prompt_embeds.shape[1]
         | 
| 485 | 
            +
                            uncond_input = tokenizer(
         | 
| 486 | 
            +
                                negative_prompt,
         | 
| 487 | 
            +
                                padding="max_length",
         | 
| 488 | 
            +
                                max_length=max_length,
         | 
| 489 | 
            +
                                truncation=True,
         | 
| 490 | 
            +
                                return_tensors="pt",
         | 
| 491 | 
            +
                            )
         | 
| 492 | 
            +
             | 
| 493 | 
            +
                            negative_prompt_embeds = text_encoder(
         | 
| 494 | 
            +
                                uncond_input.input_ids.to(device),
         | 
| 495 | 
            +
                                output_hidden_states=True,
         | 
| 496 | 
            +
                            )
         | 
| 497 | 
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         | 
| 498 | 
            +
                            negative_pooled_prompt_embeds = negative_prompt_embeds[0]
         | 
| 499 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                            negative_prompt_embeds_list.append(negative_prompt_embeds)
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                        negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                    if self.text_encoder_2 is not None:
         | 
| 506 | 
            +
                        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
         | 
| 507 | 
            +
                    else:
         | 
| 508 | 
            +
                        prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                    bs_embed, seq_len, _ = prompt_embeds.shape
         | 
| 511 | 
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 512 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 513 | 
            +
                    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                    if do_classifier_free_guidance:
         | 
| 516 | 
            +
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         | 
| 517 | 
            +
                        seq_len = negative_prompt_embeds.shape[1]
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                        if self.text_encoder_2 is not None:
         | 
| 520 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
         | 
| 521 | 
            +
                        else:
         | 
| 522 | 
            +
                            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 525 | 
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         | 
| 528 | 
            +
                        bs_embed * num_images_per_prompt, -1
         | 
| 529 | 
            +
                    )
         | 
| 530 | 
            +
                    if do_classifier_free_guidance:
         | 
| 531 | 
            +
                        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         | 
| 532 | 
            +
                            bs_embed * num_images_per_prompt, -1
         | 
| 533 | 
            +
                        )
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                    if self.text_encoder is not None:
         | 
| 536 | 
            +
                        if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 537 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 538 | 
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                    if self.text_encoder_2 is not None:
         | 
| 541 | 
            +
                        if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 542 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 543 | 
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
         | 
| 548 | 
            +
                def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
         | 
| 549 | 
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                    if not isinstance(image, torch.Tensor):
         | 
| 552 | 
            +
                        image = self.feature_extractor(image, return_tensors="pt").pixel_values
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 555 | 
            +
                    if output_hidden_states:
         | 
| 556 | 
            +
                        image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
         | 
| 557 | 
            +
                        image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 558 | 
            +
                        uncond_image_enc_hidden_states = self.image_encoder(
         | 
| 559 | 
            +
                            torch.zeros_like(image), output_hidden_states=True
         | 
| 560 | 
            +
                        ).hidden_states[-2]
         | 
| 561 | 
            +
                        uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
         | 
| 562 | 
            +
                            num_images_per_prompt, dim=0
         | 
| 563 | 
            +
                        )
         | 
| 564 | 
            +
                        return image_enc_hidden_states, uncond_image_enc_hidden_states
         | 
| 565 | 
            +
                    else:
         | 
| 566 | 
            +
                        image_embeds = self.image_encoder(image).image_embeds
         | 
| 567 | 
            +
                        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 568 | 
            +
                        uncond_image_embeds = torch.zeros_like(image_embeds)
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                        return image_embeds, uncond_image_embeds
         | 
| 571 | 
            +
             | 
| 572 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
         | 
| 573 | 
            +
                def prepare_ip_adapter_image_embeds(
         | 
| 574 | 
            +
                    self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
         | 
| 575 | 
            +
                ):
         | 
| 576 | 
            +
                    if ip_adapter_image_embeds is None:
         | 
| 577 | 
            +
                        if not isinstance(ip_adapter_image, list):
         | 
| 578 | 
            +
                            ip_adapter_image = [ip_adapter_image]
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                        if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
         | 
| 581 | 
            +
                            raise ValueError(
         | 
| 582 | 
            +
                                f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
         | 
| 583 | 
            +
                            )
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                        image_embeds = []
         | 
| 586 | 
            +
                        for single_ip_adapter_image, image_proj_layer in zip(
         | 
| 587 | 
            +
                            ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
         | 
| 588 | 
            +
                        ):
         | 
| 589 | 
            +
                            output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
         | 
| 590 | 
            +
                            single_image_embeds, single_negative_image_embeds = self.encode_image(
         | 
| 591 | 
            +
                                single_ip_adapter_image, device, 1, output_hidden_state
         | 
| 592 | 
            +
                            )
         | 
| 593 | 
            +
                            single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
         | 
| 594 | 
            +
                            single_negative_image_embeds = torch.stack(
         | 
| 595 | 
            +
                                [single_negative_image_embeds] * num_images_per_prompt, dim=0
         | 
| 596 | 
            +
                            )
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                            if do_classifier_free_guidance:
         | 
| 599 | 
            +
                                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
         | 
| 600 | 
            +
                                single_image_embeds = single_image_embeds.to(device)
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                            image_embeds.append(single_image_embeds)
         | 
| 603 | 
            +
                    else:
         | 
| 604 | 
            +
                        repeat_dims = [1]
         | 
| 605 | 
            +
                        image_embeds = []
         | 
| 606 | 
            +
                        for single_image_embeds in ip_adapter_image_embeds:
         | 
| 607 | 
            +
                            if do_classifier_free_guidance:
         | 
| 608 | 
            +
                                single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
         | 
| 609 | 
            +
                                single_image_embeds = single_image_embeds.repeat(
         | 
| 610 | 
            +
                                    num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
         | 
| 611 | 
            +
                                )
         | 
| 612 | 
            +
                                single_negative_image_embeds = single_negative_image_embeds.repeat(
         | 
| 613 | 
            +
                                    num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
         | 
| 614 | 
            +
                                )
         | 
| 615 | 
            +
                                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
         | 
| 616 | 
            +
                            else:
         | 
| 617 | 
            +
                                single_image_embeds = single_image_embeds.repeat(
         | 
| 618 | 
            +
                                    num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
         | 
| 619 | 
            +
                                )
         | 
| 620 | 
            +
                            image_embeds.append(single_image_embeds)
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                    return image_embeds
         | 
| 623 | 
            +
             | 
| 624 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
         | 
| 625 | 
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         | 
| 626 | 
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         | 
| 627 | 
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         | 
| 628 | 
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 629 | 
            +
                    # and should be between [0, 1]
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 632 | 
            +
                    extra_step_kwargs = {}
         | 
| 633 | 
            +
                    if accepts_eta:
         | 
| 634 | 
            +
                        extra_step_kwargs["eta"] = eta
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                    # check if the scheduler accepts generator
         | 
| 637 | 
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 638 | 
            +
                    if accepts_generator:
         | 
| 639 | 
            +
                        extra_step_kwargs["generator"] = generator
         | 
| 640 | 
            +
                    return extra_step_kwargs
         | 
| 641 | 
            +
             | 
| 642 | 
            +
                def check_inputs(
         | 
| 643 | 
            +
                    self,
         | 
| 644 | 
            +
                    prompt,
         | 
| 645 | 
            +
                    prompt_2,
         | 
| 646 | 
            +
                    height,
         | 
| 647 | 
            +
                    width,
         | 
| 648 | 
            +
                    callback_steps,
         | 
| 649 | 
            +
                    negative_prompt=None,
         | 
| 650 | 
            +
                    negative_prompt_2=None,
         | 
| 651 | 
            +
                    prompt_embeds=None,
         | 
| 652 | 
            +
                    negative_prompt_embeds=None,
         | 
| 653 | 
            +
                    pooled_prompt_embeds=None,
         | 
| 654 | 
            +
                    negative_pooled_prompt_embeds=None,
         | 
| 655 | 
            +
                    ip_adapter_image=None,
         | 
| 656 | 
            +
                    ip_adapter_image_embeds=None,
         | 
| 657 | 
            +
                    callback_on_step_end_tensor_inputs=None,
         | 
| 658 | 
            +
                ):
         | 
| 659 | 
            +
                    if height % 8 != 0 or width % 8 != 0:
         | 
| 660 | 
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                    if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
         | 
| 663 | 
            +
                        raise ValueError(
         | 
| 664 | 
            +
                            f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
         | 
| 665 | 
            +
                            f" {type(callback_steps)}."
         | 
| 666 | 
            +
                        )
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         | 
| 669 | 
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         | 
| 670 | 
            +
                    ):
         | 
| 671 | 
            +
                        raise ValueError(
         | 
| 672 | 
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         | 
| 673 | 
            +
                        )
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                    if prompt is not None and prompt_embeds is not None:
         | 
| 676 | 
            +
                        raise ValueError(
         | 
| 677 | 
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 678 | 
            +
                            " only forward one of the two."
         | 
| 679 | 
            +
                        )
         | 
| 680 | 
            +
                    elif prompt_2 is not None and prompt_embeds is not None:
         | 
| 681 | 
            +
                        raise ValueError(
         | 
| 682 | 
            +
                            f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 683 | 
            +
                            " only forward one of the two."
         | 
| 684 | 
            +
                        )
         | 
| 685 | 
            +
                    elif prompt is None and prompt_embeds is None:
         | 
| 686 | 
            +
                        raise ValueError(
         | 
| 687 | 
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         | 
| 688 | 
            +
                        )
         | 
| 689 | 
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         | 
| 690 | 
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         | 
| 691 | 
            +
                    elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
         | 
| 692 | 
            +
                        raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         | 
| 695 | 
            +
                        raise ValueError(
         | 
| 696 | 
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         | 
| 697 | 
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         | 
| 698 | 
            +
                        )
         | 
| 699 | 
            +
                    elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
         | 
| 700 | 
            +
                        raise ValueError(
         | 
| 701 | 
            +
                            f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
         | 
| 702 | 
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         | 
| 703 | 
            +
                        )
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         | 
| 706 | 
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         | 
| 707 | 
            +
                            raise ValueError(
         | 
| 708 | 
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         | 
| 709 | 
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         | 
| 710 | 
            +
                                f" {negative_prompt_embeds.shape}."
         | 
| 711 | 
            +
                            )
         | 
| 712 | 
            +
             | 
| 713 | 
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         | 
| 714 | 
            +
                        raise ValueError(
         | 
| 715 | 
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         | 
| 716 | 
            +
                        )
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                    if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
         | 
| 719 | 
            +
                        raise ValueError(
         | 
| 720 | 
            +
                            "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
         | 
| 721 | 
            +
                        )
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                    if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
         | 
| 724 | 
            +
                        raise ValueError(
         | 
| 725 | 
            +
                            "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
         | 
| 726 | 
            +
                        )
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                    if ip_adapter_image_embeds is not None:
         | 
| 729 | 
            +
                        if not isinstance(ip_adapter_image_embeds, list):
         | 
| 730 | 
            +
                            raise ValueError(
         | 
| 731 | 
            +
                                f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
         | 
| 732 | 
            +
                            )
         | 
| 733 | 
            +
                        elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
         | 
| 734 | 
            +
                            raise ValueError(
         | 
| 735 | 
            +
                                f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
         | 
| 736 | 
            +
                            )
         | 
| 737 | 
            +
             | 
| 738 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
         | 
| 739 | 
            +
                def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
         | 
| 740 | 
            +
                    shape = (
         | 
| 741 | 
            +
                        batch_size,
         | 
| 742 | 
            +
                        num_channels_latents,
         | 
| 743 | 
            +
                        int(height) // self.vae_scale_factor,
         | 
| 744 | 
            +
                        int(width) // self.vae_scale_factor,
         | 
| 745 | 
            +
                    )
         | 
| 746 | 
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 747 | 
            +
                        raise ValueError(
         | 
| 748 | 
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 749 | 
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 750 | 
            +
                        )
         | 
| 751 | 
            +
             | 
| 752 | 
            +
                    if latents is None:
         | 
| 753 | 
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 754 | 
            +
                    else:
         | 
| 755 | 
            +
                        latents = latents.to(device)
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         | 
| 758 | 
            +
                    latents = latents * self.scheduler.init_noise_sigma
         | 
| 759 | 
            +
                    return latents
         | 
| 760 | 
            +
             | 
| 761 | 
            +
                def _get_add_time_ids(
         | 
| 762 | 
            +
                    self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
         | 
| 763 | 
            +
                ):
         | 
| 764 | 
            +
                    add_time_ids = list(original_size + crops_coords_top_left + target_size)
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                    passed_add_embed_dim = (
         | 
| 767 | 
            +
                        self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
         | 
| 768 | 
            +
                    )
         | 
| 769 | 
            +
                    expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
         | 
| 770 | 
            +
             | 
| 771 | 
            +
                    if expected_add_embed_dim != passed_add_embed_dim:
         | 
| 772 | 
            +
                        raise ValueError(
         | 
| 773 | 
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
         | 
| 774 | 
            +
                        )
         | 
| 775 | 
            +
             | 
| 776 | 
            +
                    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
         | 
| 777 | 
            +
                    return add_time_ids
         | 
| 778 | 
            +
             | 
| 779 | 
            +
                def upcast_vae(self):
         | 
| 780 | 
            +
                    dtype = self.vae.dtype
         | 
| 781 | 
            +
                    self.vae.to(dtype=torch.float32)
         | 
| 782 | 
            +
                    use_torch_2_0_or_xformers = isinstance(
         | 
| 783 | 
            +
                        self.vae.decoder.mid_block.attentions[0].processor,
         | 
| 784 | 
            +
                        (
         | 
| 785 | 
            +
                            AttnProcessor2_0,
         | 
| 786 | 
            +
                            XFormersAttnProcessor,
         | 
| 787 | 
            +
                            LoRAXFormersAttnProcessor,
         | 
| 788 | 
            +
                            LoRAAttnProcessor2_0,
         | 
| 789 | 
            +
                            FusedAttnProcessor2_0,
         | 
| 790 | 
            +
                        ),
         | 
| 791 | 
            +
                    )
         | 
| 792 | 
            +
                    # if xformers or torch_2_0 is used attention block does not need
         | 
| 793 | 
            +
                    # to be in float32 which can save lots of memory
         | 
| 794 | 
            +
                    if use_torch_2_0_or_xformers:
         | 
| 795 | 
            +
                        self.vae.post_quant_conv.to(dtype)
         | 
| 796 | 
            +
                        self.vae.decoder.conv_in.to(dtype)
         | 
| 797 | 
            +
                        self.vae.decoder.mid_block.to(dtype)
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
         | 
| 800 | 
            +
                def get_guidance_scale_embedding(
         | 
| 801 | 
            +
                    self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
         | 
| 802 | 
            +
                ) -> torch.Tensor:
         | 
| 803 | 
            +
                    """
         | 
| 804 | 
            +
                    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                    Args:
         | 
| 807 | 
            +
                        w (`torch.Tensor`):
         | 
| 808 | 
            +
                            Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
         | 
| 809 | 
            +
                        embedding_dim (`int`, *optional*, defaults to 512):
         | 
| 810 | 
            +
                            Dimension of the embeddings to generate.
         | 
| 811 | 
            +
                        dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
         | 
| 812 | 
            +
                            Data type of the generated embeddings.
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                    Returns:
         | 
| 815 | 
            +
                        `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
         | 
| 816 | 
            +
                    """
         | 
| 817 | 
            +
                    assert len(w.shape) == 1
         | 
| 818 | 
            +
                    w = w * 1000.0
         | 
| 819 | 
            +
             | 
| 820 | 
            +
                    half_dim = embedding_dim // 2
         | 
| 821 | 
            +
                    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
         | 
| 822 | 
            +
                    emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
         | 
| 823 | 
            +
                    emb = w.to(dtype)[:, None] * emb[None, :]
         | 
| 824 | 
            +
                    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         | 
| 825 | 
            +
                    if embedding_dim % 2 == 1:  # zero pad
         | 
| 826 | 
            +
                        emb = torch.nn.functional.pad(emb, (0, 1))
         | 
| 827 | 
            +
                    assert emb.shape == (w.shape[0], embedding_dim)
         | 
| 828 | 
            +
                    return emb
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                @property
         | 
| 831 | 
            +
                def guidance_scale(self):
         | 
| 832 | 
            +
                    return self._guidance_scale
         | 
| 833 | 
            +
             | 
| 834 | 
            +
                @property
         | 
| 835 | 
            +
                def guidance_rescale(self):
         | 
| 836 | 
            +
                    return self._guidance_rescale
         | 
| 837 | 
            +
             | 
| 838 | 
            +
                @property
         | 
| 839 | 
            +
                def clip_skip(self):
         | 
| 840 | 
            +
                    return self._clip_skip
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 843 | 
            +
                # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 844 | 
            +
                # corresponds to doing no classifier free guidance.
         | 
| 845 | 
            +
                @property
         | 
| 846 | 
            +
                def do_classifier_free_guidance(self):
         | 
| 847 | 
            +
                    return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
         | 
| 848 | 
            +
             | 
| 849 | 
            +
                @property
         | 
| 850 | 
            +
                def cross_attention_kwargs(self):
         | 
| 851 | 
            +
                    return self._cross_attention_kwargs
         | 
| 852 | 
            +
             | 
| 853 | 
            +
                @property
         | 
| 854 | 
            +
                def denoising_end(self):
         | 
| 855 | 
            +
                    return self._denoising_end
         | 
| 856 | 
            +
             | 
| 857 | 
            +
                @property
         | 
| 858 | 
            +
                def num_timesteps(self):
         | 
| 859 | 
            +
                    return self._num_timesteps
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                @property
         | 
| 862 | 
            +
                def interrupt(self):
         | 
| 863 | 
            +
                    return self._interrupt
         | 
| 864 | 
            +
             | 
| 865 | 
            +
                @torch.no_grad()
         | 
| 866 | 
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         | 
| 867 | 
            +
                def __call__(
         | 
| 868 | 
            +
                    self,
         | 
| 869 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 870 | 
            +
                    prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 871 | 
            +
                    controlnet_image: Optional[PipelineImageInput] = None,
         | 
| 872 | 
            +
                    controlnet_scale: Optional[float] = 1.0,
         | 
| 873 | 
            +
                    height: Optional[int] = None,
         | 
| 874 | 
            +
                    width: Optional[int] = None,
         | 
| 875 | 
            +
                    num_inference_steps: int = 50,
         | 
| 876 | 
            +
                    timesteps: List[int] = None,
         | 
| 877 | 
            +
                    sigmas: List[float] = None,
         | 
| 878 | 
            +
                    denoising_end: Optional[float] = None,
         | 
| 879 | 
            +
                    guidance_scale: float = 5.0,
         | 
| 880 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 881 | 
            +
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 882 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 883 | 
            +
                    eta: float = 0.0,
         | 
| 884 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 885 | 
            +
                    latents: Optional[torch.Tensor] = None,
         | 
| 886 | 
            +
                    prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 887 | 
            +
                    negative_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 888 | 
            +
                    pooled_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 889 | 
            +
                    negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
         | 
| 890 | 
            +
                    ip_adapter_image: Optional[PipelineImageInput] = None,
         | 
| 891 | 
            +
                    ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
         | 
| 892 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 893 | 
            +
                    return_dict: bool = True,
         | 
| 894 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 895 | 
            +
                    guidance_rescale: float = 0.0,
         | 
| 896 | 
            +
                    original_size: Optional[Tuple[int, int]] = None,
         | 
| 897 | 
            +
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 898 | 
            +
                    target_size: Optional[Tuple[int, int]] = None,
         | 
| 899 | 
            +
                    negative_original_size: Optional[Tuple[int, int]] = None,
         | 
| 900 | 
            +
                    negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 901 | 
            +
                    negative_target_size: Optional[Tuple[int, int]] = None,
         | 
| 902 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 903 | 
            +
                    callback_on_step_end: Optional[
         | 
| 904 | 
            +
                        Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
         | 
| 905 | 
            +
                    ] = None,
         | 
| 906 | 
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 907 | 
            +
                    **kwargs,
         | 
| 908 | 
            +
                ):
         | 
| 909 | 
            +
                    r"""
         | 
| 910 | 
            +
                    Function invoked when calling the pipeline for generation.
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                    Args:
         | 
| 913 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 914 | 
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         | 
| 915 | 
            +
                            instead.
         | 
| 916 | 
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 917 | 
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         | 
| 918 | 
            +
                            used in both text-encoders
         | 
| 919 | 
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 920 | 
            +
                            The height in pixels of the generated image. This is set to 1024 by default for the best results.
         | 
| 921 | 
            +
                            Anything below 512 pixels won't work well for
         | 
| 922 | 
            +
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         | 
| 923 | 
            +
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         | 
| 924 | 
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 925 | 
            +
                            The width in pixels of the generated image. This is set to 1024 by default for the best results.
         | 
| 926 | 
            +
                            Anything below 512 pixels won't work well for
         | 
| 927 | 
            +
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         | 
| 928 | 
            +
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         | 
| 929 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 930 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 931 | 
            +
                            expense of slower inference.
         | 
| 932 | 
            +
                        timesteps (`List[int]`, *optional*):
         | 
| 933 | 
            +
                            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
         | 
| 934 | 
            +
                            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
         | 
| 935 | 
            +
                            passed will be used. Must be in descending order.
         | 
| 936 | 
            +
                        sigmas (`List[float]`, *optional*):
         | 
| 937 | 
            +
                            Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
         | 
| 938 | 
            +
                            their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
         | 
| 939 | 
            +
                            will be used.
         | 
| 940 | 
            +
                        denoising_end (`float`, *optional*):
         | 
| 941 | 
            +
                            When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
         | 
| 942 | 
            +
                            completed before it is intentionally prematurely terminated. As a result, the returned sample will
         | 
| 943 | 
            +
                            still retain a substantial amount of noise as determined by the discrete timesteps selected by the
         | 
| 944 | 
            +
                            scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
         | 
| 945 | 
            +
                            "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
         | 
| 946 | 
            +
                            Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
         | 
| 947 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         | 
| 948 | 
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         | 
| 949 | 
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         | 
| 950 | 
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         | 
| 951 | 
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         | 
| 952 | 
            +
                            usually at the expense of lower image quality.
         | 
| 953 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 954 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 955 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 956 | 
            +
                            less than `1`).
         | 
| 957 | 
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 958 | 
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         | 
| 959 | 
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
         | 
| 960 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 961 | 
            +
                            The number of images to generate per prompt.
         | 
| 962 | 
            +
                        eta (`float`, *optional*, defaults to 0.0):
         | 
| 963 | 
            +
                            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
         | 
| 964 | 
            +
                            [`schedulers.DDIMScheduler`], will be ignored for others.
         | 
| 965 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 966 | 
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         | 
| 967 | 
            +
                            to make generation deterministic.
         | 
| 968 | 
            +
                        latents (`torch.Tensor`, *optional*):
         | 
| 969 | 
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 970 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 971 | 
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         | 
| 972 | 
            +
                        prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 973 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 974 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 975 | 
            +
                        negative_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 976 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 977 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 978 | 
            +
                            argument.
         | 
| 979 | 
            +
                        pooled_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 980 | 
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         | 
| 981 | 
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         | 
| 982 | 
            +
                        negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
         | 
| 983 | 
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 984 | 
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         | 
| 985 | 
            +
                            input argument.
         | 
| 986 | 
            +
                        ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
         | 
| 987 | 
            +
                        ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
         | 
| 988 | 
            +
                            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
         | 
| 989 | 
            +
                            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
         | 
| 990 | 
            +
                            contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
         | 
| 991 | 
            +
                            provided, embeddings are computed from the `ip_adapter_image` input argument.
         | 
| 992 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 993 | 
            +
                            The output format of the generate image. Choose between
         | 
| 994 | 
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         | 
| 995 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 996 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
         | 
| 997 | 
            +
                            of a plain tuple.
         | 
| 998 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 999 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 1000 | 
            +
                            `self.processor` in
         | 
| 1001 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 1002 | 
            +
                        guidance_rescale (`float`, *optional*, defaults to 0.0):
         | 
| 1003 | 
            +
                            Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
         | 
| 1004 | 
            +
                            Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
         | 
| 1005 | 
            +
                            [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
         | 
| 1006 | 
            +
                            Guidance rescale factor should fix overexposure when using zero terminal SNR.
         | 
| 1007 | 
            +
                        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 1008 | 
            +
                            If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
         | 
| 1009 | 
            +
                            `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
         | 
| 1010 | 
            +
                            explained in section 2.2 of
         | 
| 1011 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 1012 | 
            +
                        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         | 
| 1013 | 
            +
                            `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
         | 
| 1014 | 
            +
                            `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
         | 
| 1015 | 
            +
                            `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
         | 
| 1016 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 1017 | 
            +
                        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 1018 | 
            +
                            For most cases, `target_size` should be set to the desired height and width of the generated image. If
         | 
| 1019 | 
            +
                            not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
         | 
| 1020 | 
            +
                            section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 1021 | 
            +
                        negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 1022 | 
            +
                            To negatively condition the generation process based on a specific image resolution. Part of SDXL's
         | 
| 1023 | 
            +
                            micro-conditioning as explained in section 2.2 of
         | 
| 1024 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 1025 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 1026 | 
            +
                        negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         | 
| 1027 | 
            +
                            To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
         | 
| 1028 | 
            +
                            micro-conditioning as explained in section 2.2 of
         | 
| 1029 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 1030 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 1031 | 
            +
                        negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 1032 | 
            +
                            To negatively condition the generation process based on a target image resolution. It should be as same
         | 
| 1033 | 
            +
                            as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
         | 
| 1034 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 1035 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 1036 | 
            +
                        callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
         | 
| 1037 | 
            +
                            A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
         | 
| 1038 | 
            +
                            each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
         | 
| 1039 | 
            +
                            DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
         | 
| 1040 | 
            +
                            list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
         | 
| 1041 | 
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 1042 | 
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 1043 | 
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 1044 | 
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         | 
| 1045 | 
            +
             | 
| 1046 | 
            +
                    Examples:
         | 
| 1047 | 
            +
             | 
| 1048 | 
            +
                    Returns:
         | 
| 1049 | 
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
         | 
| 1050 | 
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
         | 
| 1051 | 
            +
                        `tuple`. When returning a tuple, the first element is a list with the generated images.
         | 
| 1052 | 
            +
                    """
         | 
| 1053 | 
            +
             | 
| 1054 | 
            +
                    callback = kwargs.pop("callback", None)
         | 
| 1055 | 
            +
                    callback_steps = kwargs.pop("callback_steps", None)
         | 
| 1056 | 
            +
             | 
| 1057 | 
            +
                    if callback is not None:
         | 
| 1058 | 
            +
                        deprecate(
         | 
| 1059 | 
            +
                            "callback",
         | 
| 1060 | 
            +
                            "1.0.0",
         | 
| 1061 | 
            +
                            "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
         | 
| 1062 | 
            +
                        )
         | 
| 1063 | 
            +
                    if callback_steps is not None:
         | 
| 1064 | 
            +
                        deprecate(
         | 
| 1065 | 
            +
                            "callback_steps",
         | 
| 1066 | 
            +
                            "1.0.0",
         | 
| 1067 | 
            +
                            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
         | 
| 1068 | 
            +
                        )
         | 
| 1069 | 
            +
             | 
| 1070 | 
            +
                    if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
         | 
| 1071 | 
            +
                        callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
         | 
| 1072 | 
            +
             | 
| 1073 | 
            +
                    # 0. Default height and width to unet
         | 
| 1074 | 
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         | 
| 1075 | 
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         | 
| 1076 | 
            +
             | 
| 1077 | 
            +
                    original_size = original_size or (height, width)
         | 
| 1078 | 
            +
                    target_size = target_size or (height, width)
         | 
| 1079 | 
            +
             | 
| 1080 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 1081 | 
            +
                    self.check_inputs(
         | 
| 1082 | 
            +
                        prompt,
         | 
| 1083 | 
            +
                        prompt_2,
         | 
| 1084 | 
            +
                        height,
         | 
| 1085 | 
            +
                        width,
         | 
| 1086 | 
            +
                        callback_steps,
         | 
| 1087 | 
            +
                        negative_prompt,
         | 
| 1088 | 
            +
                        negative_prompt_2,
         | 
| 1089 | 
            +
                        prompt_embeds,
         | 
| 1090 | 
            +
                        negative_prompt_embeds,
         | 
| 1091 | 
            +
                        pooled_prompt_embeds,
         | 
| 1092 | 
            +
                        negative_pooled_prompt_embeds,
         | 
| 1093 | 
            +
                        ip_adapter_image,
         | 
| 1094 | 
            +
                        ip_adapter_image_embeds,
         | 
| 1095 | 
            +
                        callback_on_step_end_tensor_inputs,
         | 
| 1096 | 
            +
                    )
         | 
| 1097 | 
            +
             | 
| 1098 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 1099 | 
            +
                    self._guidance_rescale = guidance_rescale
         | 
| 1100 | 
            +
                    self._clip_skip = clip_skip
         | 
| 1101 | 
            +
                    self._cross_attention_kwargs = cross_attention_kwargs
         | 
| 1102 | 
            +
                    self._denoising_end = denoising_end
         | 
| 1103 | 
            +
                    self._interrupt = False
         | 
| 1104 | 
            +
             | 
| 1105 | 
            +
                    # 2. Define call parameters
         | 
| 1106 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 1107 | 
            +
                        batch_size = 1
         | 
| 1108 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 1109 | 
            +
                        batch_size = len(prompt)
         | 
| 1110 | 
            +
                    else:
         | 
| 1111 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 1112 | 
            +
             | 
| 1113 | 
            +
                    device = self._execution_device
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                    # 3. Encode input prompt
         | 
| 1116 | 
            +
                    lora_scale = (
         | 
| 1117 | 
            +
                        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
         | 
| 1118 | 
            +
                    )
         | 
| 1119 | 
            +
             | 
| 1120 | 
            +
                    (
         | 
| 1121 | 
            +
                        prompt_embeds,
         | 
| 1122 | 
            +
                        negative_prompt_embeds,
         | 
| 1123 | 
            +
                        pooled_prompt_embeds,
         | 
| 1124 | 
            +
                        negative_pooled_prompt_embeds,
         | 
| 1125 | 
            +
                    ) = self.encode_prompt(
         | 
| 1126 | 
            +
                        prompt=prompt,
         | 
| 1127 | 
            +
                        prompt_2=prompt_2,
         | 
| 1128 | 
            +
                        device=device,
         | 
| 1129 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 1130 | 
            +
                        do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 1131 | 
            +
                        negative_prompt=negative_prompt,
         | 
| 1132 | 
            +
                        negative_prompt_2=negative_prompt_2,
         | 
| 1133 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 1134 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 1135 | 
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         | 
| 1136 | 
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         | 
| 1137 | 
            +
                        lora_scale=lora_scale,
         | 
| 1138 | 
            +
                        clip_skip=self.clip_skip,
         | 
| 1139 | 
            +
                    )
         | 
| 1140 | 
            +
             | 
| 1141 | 
            +
                    # 4. Prepare timesteps
         | 
| 1142 | 
            +
                    timesteps, num_inference_steps = retrieve_timesteps(
         | 
| 1143 | 
            +
                        self.scheduler, num_inference_steps, device, timesteps, sigmas
         | 
| 1144 | 
            +
                    )
         | 
| 1145 | 
            +
             | 
| 1146 | 
            +
                    # 5. Prepare latent variables
         | 
| 1147 | 
            +
                    num_channels_latents = self.unet.config.in_channels
         | 
| 1148 | 
            +
                    latents = self.prepare_latents(
         | 
| 1149 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 1150 | 
            +
                        num_channels_latents,
         | 
| 1151 | 
            +
                        height,
         | 
| 1152 | 
            +
                        width,
         | 
| 1153 | 
            +
                        prompt_embeds.dtype,
         | 
| 1154 | 
            +
                        device,
         | 
| 1155 | 
            +
                        generator,
         | 
| 1156 | 
            +
                        latents,
         | 
| 1157 | 
            +
                    )
         | 
| 1158 | 
            +
             | 
| 1159 | 
            +
                    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 1160 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 1161 | 
            +
             | 
| 1162 | 
            +
                    # 7. Prepare added time ids & embeddings
         | 
| 1163 | 
            +
                    add_text_embeds = pooled_prompt_embeds
         | 
| 1164 | 
            +
                    if self.text_encoder_2 is None:
         | 
| 1165 | 
            +
                        text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
         | 
| 1166 | 
            +
                    else:
         | 
| 1167 | 
            +
                        text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
         | 
| 1168 | 
            +
             | 
| 1169 | 
            +
                    add_time_ids = self._get_add_time_ids(
         | 
| 1170 | 
            +
                        original_size,
         | 
| 1171 | 
            +
                        crops_coords_top_left,
         | 
| 1172 | 
            +
                        target_size,
         | 
| 1173 | 
            +
                        dtype=prompt_embeds.dtype,
         | 
| 1174 | 
            +
                        text_encoder_projection_dim=text_encoder_projection_dim,
         | 
| 1175 | 
            +
                    )
         | 
| 1176 | 
            +
                    if negative_original_size is not None and negative_target_size is not None:
         | 
| 1177 | 
            +
                        negative_add_time_ids = self._get_add_time_ids(
         | 
| 1178 | 
            +
                            negative_original_size,
         | 
| 1179 | 
            +
                            negative_crops_coords_top_left,
         | 
| 1180 | 
            +
                            negative_target_size,
         | 
| 1181 | 
            +
                            dtype=prompt_embeds.dtype,
         | 
| 1182 | 
            +
                            text_encoder_projection_dim=text_encoder_projection_dim,
         | 
| 1183 | 
            +
                        )
         | 
| 1184 | 
            +
                    else:
         | 
| 1185 | 
            +
                        negative_add_time_ids = add_time_ids
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
                    if self.do_classifier_free_guidance:
         | 
| 1188 | 
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 1189 | 
            +
                        add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
         | 
| 1190 | 
            +
                        add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
         | 
| 1191 | 
            +
             | 
| 1192 | 
            +
                    prompt_embeds = prompt_embeds.to(device)
         | 
| 1193 | 
            +
                    add_text_embeds = add_text_embeds.to(device)
         | 
| 1194 | 
            +
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         | 
| 1195 | 
            +
             | 
| 1196 | 
            +
                    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
         | 
| 1197 | 
            +
                        image_embeds = self.prepare_ip_adapter_image_embeds(
         | 
| 1198 | 
            +
                            ip_adapter_image,
         | 
| 1199 | 
            +
                            ip_adapter_image_embeds,
         | 
| 1200 | 
            +
                            device,
         | 
| 1201 | 
            +
                            batch_size * num_images_per_prompt,
         | 
| 1202 | 
            +
                            self.do_classifier_free_guidance,
         | 
| 1203 | 
            +
                        )
         | 
| 1204 | 
            +
             | 
| 1205 | 
            +
                    if controlnet_image is not None and self.controlnet is not None:
         | 
| 1206 | 
            +
                        controlnet_image = self.prepare_image(
         | 
| 1207 | 
            +
                            controlnet_image,
         | 
| 1208 | 
            +
                            width,
         | 
| 1209 | 
            +
                            height,
         | 
| 1210 | 
            +
                            batch_size,
         | 
| 1211 | 
            +
                            num_images_per_prompt,
         | 
| 1212 | 
            +
                            device,
         | 
| 1213 | 
            +
                            self.controlnet.dtype,
         | 
| 1214 | 
            +
                            do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 1215 | 
            +
                        )
         | 
| 1216 | 
            +
                        # 8. Denoising loop
         | 
| 1217 | 
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         | 
| 1218 | 
            +
             | 
| 1219 | 
            +
                    # 8.1 Apply denoising_end
         | 
| 1220 | 
            +
                    if (
         | 
| 1221 | 
            +
                        self.denoising_end is not None
         | 
| 1222 | 
            +
                        and isinstance(self.denoising_end, float)
         | 
| 1223 | 
            +
                        and self.denoising_end > 0
         | 
| 1224 | 
            +
                        and self.denoising_end < 1
         | 
| 1225 | 
            +
                    ):
         | 
| 1226 | 
            +
                        discrete_timestep_cutoff = int(
         | 
| 1227 | 
            +
                            round(
         | 
| 1228 | 
            +
                                self.scheduler.config.num_train_timesteps
         | 
| 1229 | 
            +
                                - (self.denoising_end * self.scheduler.config.num_train_timesteps)
         | 
| 1230 | 
            +
                            )
         | 
| 1231 | 
            +
                        )
         | 
| 1232 | 
            +
                        num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
         | 
| 1233 | 
            +
                        timesteps = timesteps[:num_inference_steps]
         | 
| 1234 | 
            +
             | 
| 1235 | 
            +
                    # 9. Optionally get Guidance Scale Embedding
         | 
| 1236 | 
            +
                    timestep_cond = None
         | 
| 1237 | 
            +
                    if self.unet.config.time_cond_proj_dim is not None:
         | 
| 1238 | 
            +
                        guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
         | 
| 1239 | 
            +
                        timestep_cond = self.get_guidance_scale_embedding(
         | 
| 1240 | 
            +
                            guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
         | 
| 1241 | 
            +
                        ).to(device=device, dtype=latents.dtype)
         | 
| 1242 | 
            +
             | 
| 1243 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 1244 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 1245 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 1246 | 
            +
                            if self.interrupt:
         | 
| 1247 | 
            +
                                continue
         | 
| 1248 | 
            +
             | 
| 1249 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 1250 | 
            +
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         | 
| 1251 | 
            +
             | 
| 1252 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 1253 | 
            +
             | 
| 1254 | 
            +
                            # predict the noise residual
         | 
| 1255 | 
            +
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         | 
| 1256 | 
            +
                            if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
         | 
| 1257 | 
            +
                                added_cond_kwargs["image_embeds"] = image_embeds
         | 
| 1258 | 
            +
             | 
| 1259 | 
            +
                            unet_additional_args = {}
         | 
| 1260 | 
            +
                            if self.controlnet is not None:
         | 
| 1261 | 
            +
                                controls = self.controlnet(
         | 
| 1262 | 
            +
                                    controlnet_image,
         | 
| 1263 | 
            +
                                    t,
         | 
| 1264 | 
            +
                                )
         | 
| 1265 | 
            +
             | 
| 1266 | 
            +
                                # This makes the effect of the controlnext much more stronger
         | 
| 1267 | 
            +
                                # if do_classifier_free_guidance:
         | 
| 1268 | 
            +
                                #     scale = controlnet_output['scale']
         | 
| 1269 | 
            +
                                #     scale = scale.repeat(batch_size*2)[:, None, None, None]
         | 
| 1270 | 
            +
                                #     scale[:batch_size] *= 0
         | 
| 1271 | 
            +
                                #     controlnet_output['scale'] = scale
         | 
| 1272 | 
            +
             | 
| 1273 | 
            +
                                controls['scale'] *= controlnet_scale
         | 
| 1274 | 
            +
                                unet_additional_args["controls"] = controls
         | 
| 1275 | 
            +
             | 
| 1276 | 
            +
                            noise_pred = self.unet(
         | 
| 1277 | 
            +
                                latent_model_input,
         | 
| 1278 | 
            +
                                t,
         | 
| 1279 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 1280 | 
            +
                                timestep_cond=timestep_cond,
         | 
| 1281 | 
            +
                                cross_attention_kwargs=self.cross_attention_kwargs,
         | 
| 1282 | 
            +
                                added_cond_kwargs=added_cond_kwargs,
         | 
| 1283 | 
            +
                                return_dict=False,
         | 
| 1284 | 
            +
                                **unet_additional_args,
         | 
| 1285 | 
            +
                            )[0]
         | 
| 1286 | 
            +
             | 
| 1287 | 
            +
                            # perform guidance
         | 
| 1288 | 
            +
                            if self.do_classifier_free_guidance:
         | 
| 1289 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 1290 | 
            +
                                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 1291 | 
            +
             | 
| 1292 | 
            +
                            if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
         | 
| 1293 | 
            +
                                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
         | 
| 1294 | 
            +
                                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
         | 
| 1295 | 
            +
             | 
| 1296 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 1297 | 
            +
                            latents_dtype = latents.dtype
         | 
| 1298 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         | 
| 1299 | 
            +
                            if latents.dtype != latents_dtype:
         | 
| 1300 | 
            +
                                if torch.backends.mps.is_available():
         | 
| 1301 | 
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         | 
| 1302 | 
            +
                                    latents = latents.to(latents_dtype)
         | 
| 1303 | 
            +
             | 
| 1304 | 
            +
                            if callback_on_step_end is not None:
         | 
| 1305 | 
            +
                                callback_kwargs = {}
         | 
| 1306 | 
            +
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 1307 | 
            +
                                    callback_kwargs[k] = locals()[k]
         | 
| 1308 | 
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 1309 | 
            +
             | 
| 1310 | 
            +
                                latents = callback_outputs.pop("latents", latents)
         | 
| 1311 | 
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 1312 | 
            +
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         | 
| 1313 | 
            +
                                add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
         | 
| 1314 | 
            +
                                negative_pooled_prompt_embeds = callback_outputs.pop(
         | 
| 1315 | 
            +
                                    "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
         | 
| 1316 | 
            +
                                )
         | 
| 1317 | 
            +
                                add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
         | 
| 1318 | 
            +
                                negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
         | 
| 1319 | 
            +
             | 
| 1320 | 
            +
                            # call the callback, if provided
         | 
| 1321 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 1322 | 
            +
                                progress_bar.update()
         | 
| 1323 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 1324 | 
            +
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         | 
| 1325 | 
            +
                                    callback(step_idx, t, latents)
         | 
| 1326 | 
            +
             | 
| 1327 | 
            +
                            if XLA_AVAILABLE:
         | 
| 1328 | 
            +
                                xm.mark_step()
         | 
| 1329 | 
            +
             | 
| 1330 | 
            +
                    if not output_type == "latent":
         | 
| 1331 | 
            +
                        # make sure the VAE is in float32 mode, as it overflows in float16
         | 
| 1332 | 
            +
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         | 
| 1333 | 
            +
             | 
| 1334 | 
            +
                        if needs_upcasting:
         | 
| 1335 | 
            +
                            self.upcast_vae()
         | 
| 1336 | 
            +
                            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         | 
| 1337 | 
            +
                        elif latents.dtype != self.vae.dtype:
         | 
| 1338 | 
            +
                            if torch.backends.mps.is_available():
         | 
| 1339 | 
            +
                                # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         | 
| 1340 | 
            +
                                self.vae = self.vae.to(latents.dtype)
         | 
| 1341 | 
            +
             | 
| 1342 | 
            +
                        # unscale/denormalize the latents
         | 
| 1343 | 
            +
                        # denormalize with the mean and std if available and not None
         | 
| 1344 | 
            +
                        has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
         | 
| 1345 | 
            +
                        has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
         | 
| 1346 | 
            +
                        if has_latents_mean and has_latents_std:
         | 
| 1347 | 
            +
                            latents_mean = (
         | 
| 1348 | 
            +
                                torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         | 
| 1349 | 
            +
                            )
         | 
| 1350 | 
            +
                            latents_std = (
         | 
| 1351 | 
            +
                                torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         | 
| 1352 | 
            +
                            )
         | 
| 1353 | 
            +
                            latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
         | 
| 1354 | 
            +
                        else:
         | 
| 1355 | 
            +
                            latents = latents / self.vae.config.scaling_factor
         | 
| 1356 | 
            +
             | 
| 1357 | 
            +
                        image = self.vae.decode(latents, return_dict=False)[0]
         | 
| 1358 | 
            +
             | 
| 1359 | 
            +
                        # cast back to fp16 if needed
         | 
| 1360 | 
            +
                        if needs_upcasting:
         | 
| 1361 | 
            +
                            self.vae.to(dtype=torch.float16)
         | 
| 1362 | 
            +
                    else:
         | 
| 1363 | 
            +
                        image = latents
         | 
| 1364 | 
            +
             | 
| 1365 | 
            +
                    if not output_type == "latent":
         | 
| 1366 | 
            +
                        # apply watermark if available
         | 
| 1367 | 
            +
                        if self.watermark is not None:
         | 
| 1368 | 
            +
                            image = self.watermark.apply_watermark(image)
         | 
| 1369 | 
            +
             | 
| 1370 | 
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 1371 | 
            +
             | 
| 1372 | 
            +
                    # Offload all models
         | 
| 1373 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 1374 | 
            +
             | 
| 1375 | 
            +
                    if not return_dict:
         | 
| 1376 | 
            +
                        return (image,)
         | 
| 1377 | 
            +
             | 
| 1378 | 
            +
                    return StableDiffusionXLPipelineOutput(images=image)
         | 
    	
        utils/preprocess.py
    ADDED
    
    | @@ -0,0 +1,38 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import cv2
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            from PIL import Image
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            def get_extractor(extractor_name):
         | 
| 7 | 
            +
                if extractor_name is None:
         | 
| 8 | 
            +
                    return None
         | 
| 9 | 
            +
                if extractor_name not in EXTRACTORS:
         | 
| 10 | 
            +
                    raise ValueError(f"Extractor {extractor_name} is not supported.")
         | 
| 11 | 
            +
                return EXTRACTORS[extractor_name]
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            def canny_extractor(image: Image.Image, threshold1=None, threshold2=None) -> Image.Image:
         | 
| 15 | 
            +
                image = np.array(image)
         | 
| 16 | 
            +
                gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
         | 
| 17 | 
            +
                v = np.median(gray)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                sigma = 0.33
         | 
| 20 | 
            +
                threshold1 = threshold1 or int(max(0, (1.0 - sigma) * v))
         | 
| 21 | 
            +
                threshold2 = threshold2 or int(min(255, (1.0 + sigma) * v))
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                edges = cv2.Canny(gray, threshold1, threshold2)
         | 
| 24 | 
            +
                edges = Image.fromarray(edges).convert("RGB")
         | 
| 25 | 
            +
                return edges
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            def depth_extractor(image: Image.Image):
         | 
| 29 | 
            +
                raise NotImplementedError("Depth extractor is not implemented yet.")
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            def pose_extractor(image: Image.Image):
         | 
| 33 | 
            +
                raise NotImplementedError("Pose extractor is not implemented yet.")
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            EXTRACTORS = {
         | 
| 37 | 
            +
                "canny": canny_extractor,
         | 
| 38 | 
            +
            }
         | 
    	
        utils/tools.py
    ADDED
    
    | @@ -0,0 +1,146 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            from torch import nn
         | 
| 4 | 
            +
            from diffusers import UniPCMultistepScheduler, AutoencoderKL
         | 
| 5 | 
            +
            from safetensors.torch import load_file
         | 
| 6 | 
            +
            from pipeline.pipeline_controlnext import StableDiffusionXLControlNeXtPipeline
         | 
| 7 | 
            +
            from models.unet import UNet2DConditionModel, UNET_CONFIG
         | 
| 8 | 
            +
            from models.controlnet import ControlNetModel
         | 
| 9 | 
            +
            from . import utils
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            def get_pipeline(
         | 
| 13 | 
            +
                pretrained_model_name_or_path,
         | 
| 14 | 
            +
                unet_model_name_or_path,
         | 
| 15 | 
            +
                controlnet_model_name_or_path,
         | 
| 16 | 
            +
                vae_model_name_or_path=None,
         | 
| 17 | 
            +
                lora_path=None,
         | 
| 18 | 
            +
                load_weight_increasement=False,
         | 
| 19 | 
            +
                enable_xformers_memory_efficient_attention=False,
         | 
| 20 | 
            +
                revision=None,
         | 
| 21 | 
            +
                variant=None,
         | 
| 22 | 
            +
                hf_cache_dir=None,
         | 
| 23 | 
            +
                use_safetensors=True,
         | 
| 24 | 
            +
                device=None,
         | 
| 25 | 
            +
            ):
         | 
| 26 | 
            +
                pipeline_init_kwargs = {}
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                if controlnet_model_name_or_path is not None:
         | 
| 29 | 
            +
                    print(f"loading controlnet from {controlnet_model_name_or_path}")
         | 
| 30 | 
            +
                    controlnet = ControlNetModel()
         | 
| 31 | 
            +
                    if controlnet_model_name_or_path is not None:
         | 
| 32 | 
            +
                        utils.load_safetensors(controlnet, controlnet_model_name_or_path)
         | 
| 33 | 
            +
                    else:
         | 
| 34 | 
            +
                        controlnet.scale = nn.Parameter(torch.tensor(0.), requires_grad=False)
         | 
| 35 | 
            +
                    controlnet.to(device, dtype=torch.float32)
         | 
| 36 | 
            +
                    pipeline_init_kwargs["controlnet"] = controlnet
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    utils.log_model_info(controlnet, "controlnext")
         | 
| 39 | 
            +
                else:
         | 
| 40 | 
            +
                    print(f"no controlnet")
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                print(f"loading unet from {pretrained_model_name_or_path}")
         | 
| 43 | 
            +
                if os.path.isfile(pretrained_model_name_or_path):
         | 
| 44 | 
            +
                    # load unet from local checkpoint
         | 
| 45 | 
            +
                    unet_sd = load_file(pretrained_model_name_or_path) if pretrained_model_name_or_path.endswith(".safetensors") else torch.load(pretrained_model_name_or_path)
         | 
| 46 | 
            +
                    unet_sd = utils.extract_unet_state_dict(unet_sd)
         | 
| 47 | 
            +
                    unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
         | 
| 48 | 
            +
                    unet = UNet2DConditionModel.from_config(UNET_CONFIG)
         | 
| 49 | 
            +
                    unet.load_state_dict(unet_sd, strict=True)
         | 
| 50 | 
            +
                else:
         | 
| 51 | 
            +
                    from huggingface_hub import hf_hub_download
         | 
| 52 | 
            +
                    filename = "diffusion_pytorch_model"
         | 
| 53 | 
            +
                    if variant == "fp16":
         | 
| 54 | 
            +
                        filename += ".fp16"
         | 
| 55 | 
            +
                    if use_safetensors:
         | 
| 56 | 
            +
                        filename += ".safetensors"
         | 
| 57 | 
            +
                    else:
         | 
| 58 | 
            +
                        filename += ".pt"
         | 
| 59 | 
            +
                    unet_file = hf_hub_download(
         | 
| 60 | 
            +
                        repo_id=pretrained_model_name_or_path,
         | 
| 61 | 
            +
                        filename="unet" + '/' + filename,
         | 
| 62 | 
            +
                        cache_dir=hf_cache_dir,
         | 
| 63 | 
            +
                    )
         | 
| 64 | 
            +
                    unet_sd = load_file(unet_file) if unet_file.endswith(".safetensors") else torch.load(pretrained_model_name_or_path)
         | 
| 65 | 
            +
                    unet_sd = utils.extract_unet_state_dict(unet_sd)
         | 
| 66 | 
            +
                    unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
         | 
| 67 | 
            +
                    unet = UNet2DConditionModel.from_config(UNET_CONFIG)
         | 
| 68 | 
            +
                    unet.load_state_dict(unet_sd, strict=True)
         | 
| 69 | 
            +
                unet = unet.to(dtype=torch.float16)
         | 
| 70 | 
            +
                utils.log_model_info(unet, "unet")
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                if unet_model_name_or_path is not None:
         | 
| 73 | 
            +
                    print(f"loading controlnext unet from {unet_model_name_or_path}")
         | 
| 74 | 
            +
                    controlnext_unet_sd = load_file(unet_model_name_or_path)
         | 
| 75 | 
            +
                    controlnext_unet_sd = utils.convert_to_controlnext_unet_state_dict(controlnext_unet_sd)
         | 
| 76 | 
            +
                    unet_sd = unet.state_dict()
         | 
| 77 | 
            +
                    assert all(
         | 
| 78 | 
            +
                        k in unet_sd for k in controlnext_unet_sd), \
         | 
| 79 | 
            +
                        f"controlnext unet state dict is not compatible with unet state dict, missing keys: {set(controlnext_unet_sd.keys()) - set(unet_sd.keys())}, extra keys: {set(unet_sd.keys()) - set(controlnext_unet_sd.keys())}"
         | 
| 80 | 
            +
                    if load_weight_increasement:
         | 
| 81 | 
            +
                        print("loading weight increasement")
         | 
| 82 | 
            +
                        for k in controlnext_unet_sd.keys():
         | 
| 83 | 
            +
                            controlnext_unet_sd[k] = controlnext_unet_sd[k] + unet_sd[k]
         | 
| 84 | 
            +
                    unet.load_state_dict(controlnext_unet_sd, strict=False)
         | 
| 85 | 
            +
                    utils.log_model_info(controlnext_unet_sd, "controlnext unet")
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                pipeline_init_kwargs["unet"] = unet
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                if vae_model_name_or_path is not None:
         | 
| 90 | 
            +
                    print(f"loading vae from {vae_model_name_or_path}")
         | 
| 91 | 
            +
                    vae = AutoencoderKL.from_pretrained(vae_model_name_or_path, cache_dir=hf_cache_dir, torch_dtype=torch.float16).to(device)
         | 
| 92 | 
            +
                    pipeline_init_kwargs["vae"] = vae
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                print(f"loading pipeline from {pretrained_model_name_or_path}")
         | 
| 95 | 
            +
                if os.path.isfile(pretrained_model_name_or_path):
         | 
| 96 | 
            +
                    pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_single_file(
         | 
| 97 | 
            +
                        pretrained_model_name_or_path,
         | 
| 98 | 
            +
                        use_safetensors=pretrained_model_name_or_path.endswith(".safetensors"),
         | 
| 99 | 
            +
                        local_files_only=True,
         | 
| 100 | 
            +
                        cache_dir=hf_cache_dir,
         | 
| 101 | 
            +
                        **pipeline_init_kwargs,
         | 
| 102 | 
            +
                    )
         | 
| 103 | 
            +
                else:
         | 
| 104 | 
            +
                    pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_pretrained(
         | 
| 105 | 
            +
                        pretrained_model_name_or_path,
         | 
| 106 | 
            +
                        revision=revision,
         | 
| 107 | 
            +
                        variant=variant,
         | 
| 108 | 
            +
                        use_safetensors=use_safetensors,
         | 
| 109 | 
            +
                        cache_dir=hf_cache_dir,
         | 
| 110 | 
            +
                        **pipeline_init_kwargs,
         | 
| 111 | 
            +
                    )
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
         | 
| 114 | 
            +
                pipeline.set_progress_bar_config()
         | 
| 115 | 
            +
                pipeline = pipeline.to(device, dtype=torch.float16)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                if lora_path is not None:
         | 
| 118 | 
            +
                    pipeline.load_lora_weights(lora_path)
         | 
| 119 | 
            +
                if enable_xformers_memory_efficient_attention:
         | 
| 120 | 
            +
                    pipeline.enable_xformers_memory_efficient_attention()
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                return pipeline
         | 
| 123 | 
            +
             | 
| 124 | 
            +
             | 
| 125 | 
            +
            def get_scheduler(
         | 
| 126 | 
            +
                scheduler_name,
         | 
| 127 | 
            +
                scheduler_config,
         | 
| 128 | 
            +
            ):
         | 
| 129 | 
            +
                if scheduler_name == 'Euler A':
         | 
| 130 | 
            +
                    from diffusers.schedulers import EulerAncestralDiscreteScheduler
         | 
| 131 | 
            +
                    scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
         | 
| 132 | 
            +
                elif scheduler_name == 'UniPC':
         | 
| 133 | 
            +
                    from diffusers.schedulers import UniPCMultistepScheduler
         | 
| 134 | 
            +
                    scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
         | 
| 135 | 
            +
                elif scheduler_name == 'Euler':
         | 
| 136 | 
            +
                    from diffusers.schedulers import EulerDiscreteScheduler
         | 
| 137 | 
            +
                    scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
         | 
| 138 | 
            +
                elif scheduler_name == 'DDIM':
         | 
| 139 | 
            +
                    from diffusers.schedulers import DDIMScheduler
         | 
| 140 | 
            +
                    scheduler = DDIMScheduler.from_config(scheduler_config)
         | 
| 141 | 
            +
                elif scheduler_name == 'DDPM':
         | 
| 142 | 
            +
                    from diffusers.schedulers import DDPMScheduler
         | 
| 143 | 
            +
                    scheduler = DDPMScheduler.from_config(scheduler_config)
         | 
| 144 | 
            +
                else:
         | 
| 145 | 
            +
                    raise ValueError(f"Unknown scheduler: {scheduler_name}")
         | 
| 146 | 
            +
                return scheduler
         | 
    	
        utils/utils.py
    ADDED
    
    | @@ -0,0 +1,225 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            from typing import Tuple, Union, Optional
         | 
| 3 | 
            +
            from safetensors.torch import load_file
         | 
| 4 | 
            +
            from transformers import PretrainedConfig
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            def count_num_parameters_of_safetensors_model(safetensors_path):
         | 
| 8 | 
            +
                state_dict = load_file(safetensors_path)
         | 
| 9 | 
            +
                return sum(p.numel() for p in state_dict.values())
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            def import_model_class_from_model_name_or_path(
         | 
| 13 | 
            +
                pretrained_model_name_or_path: str, revision: str, subfolder: str = None
         | 
| 14 | 
            +
            ):
         | 
| 15 | 
            +
                text_encoder_config = PretrainedConfig.from_pretrained(
         | 
| 16 | 
            +
                    pretrained_model_name_or_path, revision=revision, subfolder=subfolder
         | 
| 17 | 
            +
                )
         | 
| 18 | 
            +
                model_class = text_encoder_config.architectures[0]
         | 
| 19 | 
            +
                if model_class == "CLIPTextModel":
         | 
| 20 | 
            +
                    from transformers import CLIPTextModel
         | 
| 21 | 
            +
                    return CLIPTextModel
         | 
| 22 | 
            +
                elif model_class == "CLIPTextModelWithProjection":
         | 
| 23 | 
            +
                    from transformers import CLIPTextModelWithProjection
         | 
| 24 | 
            +
                    return CLIPTextModelWithProjection
         | 
| 25 | 
            +
                else:
         | 
| 26 | 
            +
                    raise ValueError(f"{model_class} is not supported.")
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            def fix_clip_text_encoder_position_ids(text_encoder):
         | 
| 30 | 
            +
                if hasattr(text_encoder.text_model.embeddings, "position_ids"):
         | 
| 31 | 
            +
                    text_encoder.text_model.embeddings.position_ids = text_encoder.text_model.embeddings.position_ids.long()
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            def load_controlnext_unet_state_dict(unet_sd, controlnext_unet_sd):
         | 
| 35 | 
            +
                assert all(
         | 
| 36 | 
            +
                    k in unet_sd for k in controlnext_unet_sd), f"controlnext unet state dict is not compatible with unet state dict, missing keys: {set(controlnext_unet_sd.keys()) - set(unet_sd.keys())}, extra keys: {set(unet_sd.keys()) - set(controlnext_unet_sd.keys())}"
         | 
| 37 | 
            +
                for k in controlnext_unet_sd.keys():
         | 
| 38 | 
            +
                    unet_sd[k] = controlnext_unet_sd[k]
         | 
| 39 | 
            +
                return unet_sd
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def convert_to_controlnext_unet_state_dict(state_dict):
         | 
| 43 | 
            +
                import re
         | 
| 44 | 
            +
                pattern = re.compile(r'.*attn2.*to_out.*')
         | 
| 45 | 
            +
                state_dict = {k: v for k, v in state_dict.items() if pattern.match(k)}
         | 
| 46 | 
            +
                # state_dict = extract_unet_state_dict(state_dict)
         | 
| 47 | 
            +
                if is_sdxl_state_dict(state_dict):
         | 
| 48 | 
            +
                    state_dict = convert_sdxl_unet_state_dict_to_diffusers(state_dict)
         | 
| 49 | 
            +
                return state_dict
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            def make_unet_conversion_map():
         | 
| 53 | 
            +
                unet_conversion_map_layer = []
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                for i in range(3):  # num_blocks is 3 in sdxl
         | 
| 56 | 
            +
                    # loop over downblocks/upblocks
         | 
| 57 | 
            +
                    for j in range(2):
         | 
| 58 | 
            +
                        # loop over resnets/attentions for downblocks
         | 
| 59 | 
            +
                        hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
         | 
| 60 | 
            +
                        sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
         | 
| 61 | 
            +
                        unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                        if i < 3:
         | 
| 64 | 
            +
                            # no attention layers in down_blocks.3
         | 
| 65 | 
            +
                            hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
         | 
| 66 | 
            +
                            sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
         | 
| 67 | 
            +
                            unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    for j in range(3):
         | 
| 70 | 
            +
                        # loop over resnets/attentions for upblocks
         | 
| 71 | 
            +
                        hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
         | 
| 72 | 
            +
                        sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
         | 
| 73 | 
            +
                        unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                        # if i > 0: commentout for sdxl
         | 
| 76 | 
            +
                        # no attention layers in up_blocks.0
         | 
| 77 | 
            +
                        hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
         | 
| 78 | 
            +
                        sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
         | 
| 79 | 
            +
                        unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                    if i < 3:
         | 
| 82 | 
            +
                        # no downsample in down_blocks.3
         | 
| 83 | 
            +
                        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
         | 
| 84 | 
            +
                        sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
         | 
| 85 | 
            +
                        unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                        # no upsample in up_blocks.3
         | 
| 88 | 
            +
                        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
         | 
| 89 | 
            +
                        sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}."  # change for sdxl
         | 
| 90 | 
            +
                        unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                hf_mid_atn_prefix = "mid_block.attentions.0."
         | 
| 93 | 
            +
                sd_mid_atn_prefix = "middle_block.1."
         | 
| 94 | 
            +
                unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                for j in range(2):
         | 
| 97 | 
            +
                    hf_mid_res_prefix = f"mid_block.resnets.{j}."
         | 
| 98 | 
            +
                    sd_mid_res_prefix = f"middle_block.{2*j}."
         | 
| 99 | 
            +
                    unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                unet_conversion_map_resnet = [
         | 
| 102 | 
            +
                    # (stable-diffusion, HF Diffusers)
         | 
| 103 | 
            +
                    ("in_layers.0.", "norm1."),
         | 
| 104 | 
            +
                    ("in_layers.2.", "conv1."),
         | 
| 105 | 
            +
                    ("out_layers.0.", "norm2."),
         | 
| 106 | 
            +
                    ("out_layers.3.", "conv2."),
         | 
| 107 | 
            +
                    ("emb_layers.1.", "time_emb_proj."),
         | 
| 108 | 
            +
                    ("skip_connection.", "conv_shortcut."),
         | 
| 109 | 
            +
                ]
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                unet_conversion_map = []
         | 
| 112 | 
            +
                for sd, hf in unet_conversion_map_layer:
         | 
| 113 | 
            +
                    if "resnets" in hf:
         | 
| 114 | 
            +
                        for sd_res, hf_res in unet_conversion_map_resnet:
         | 
| 115 | 
            +
                            unet_conversion_map.append((sd + sd_res, hf + hf_res))
         | 
| 116 | 
            +
                    else:
         | 
| 117 | 
            +
                        unet_conversion_map.append((sd, hf))
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                for j in range(2):
         | 
| 120 | 
            +
                    hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
         | 
| 121 | 
            +
                    sd_time_embed_prefix = f"time_embed.{j*2}."
         | 
| 122 | 
            +
                    unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                for j in range(2):
         | 
| 125 | 
            +
                    hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
         | 
| 126 | 
            +
                    sd_label_embed_prefix = f"label_emb.0.{j*2}."
         | 
| 127 | 
            +
                    unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
         | 
| 130 | 
            +
                unet_conversion_map.append(("out.0.", "conv_norm_out."))
         | 
| 131 | 
            +
                unet_conversion_map.append(("out.2.", "conv_out."))
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                return unet_conversion_map
         | 
| 134 | 
            +
             | 
| 135 | 
            +
             | 
| 136 | 
            +
            def convert_unet_state_dict(src_sd, conversion_map):
         | 
| 137 | 
            +
                converted_sd = {}
         | 
| 138 | 
            +
                for src_key, value in src_sd.items():
         | 
| 139 | 
            +
                    src_key_fragments = src_key.split(".")[:-1]  # remove weight/bias
         | 
| 140 | 
            +
                    while len(src_key_fragments) > 0:
         | 
| 141 | 
            +
                        src_key_prefix = ".".join(src_key_fragments) + "."
         | 
| 142 | 
            +
                        if src_key_prefix in conversion_map:
         | 
| 143 | 
            +
                            converted_prefix = conversion_map[src_key_prefix]
         | 
| 144 | 
            +
                            converted_key = converted_prefix + src_key[len(src_key_prefix):]
         | 
| 145 | 
            +
                            converted_sd[converted_key] = value
         | 
| 146 | 
            +
                            break
         | 
| 147 | 
            +
                        src_key_fragments.pop(-1)
         | 
| 148 | 
            +
                    assert len(src_key_fragments) > 0, f"key {src_key} not found in conversion map"
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                return converted_sd
         | 
| 151 | 
            +
             | 
| 152 | 
            +
             | 
| 153 | 
            +
            def convert_sdxl_unet_state_dict_to_diffusers(sd):
         | 
| 154 | 
            +
                unet_conversion_map = make_unet_conversion_map()
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                conversion_dict = {sd: hf for sd, hf in unet_conversion_map}
         | 
| 157 | 
            +
                return convert_unet_state_dict(sd, conversion_dict)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
             | 
| 160 | 
            +
            def extract_unet_state_dict(state_dict):
         | 
| 161 | 
            +
                unet_sd = {}
         | 
| 162 | 
            +
                UNET_KEY_PREFIX = "model.diffusion_model."
         | 
| 163 | 
            +
                for k, v in state_dict.items():
         | 
| 164 | 
            +
                    if k.startswith(UNET_KEY_PREFIX):
         | 
| 165 | 
            +
                        unet_sd[k[len(UNET_KEY_PREFIX):]] = v
         | 
| 166 | 
            +
                return unet_sd
         | 
| 167 | 
            +
             | 
| 168 | 
            +
             | 
| 169 | 
            +
            def is_sdxl_state_dict(state_dict):
         | 
| 170 | 
            +
                return any(key.startswith('input_blocks') for key in state_dict.keys())
         | 
| 171 | 
            +
             | 
| 172 | 
            +
             | 
| 173 | 
            +
            def contains_unet_keys(state_dict):
         | 
| 174 | 
            +
                UNET_KEY_PREFIX = "model.diffusion_model."
         | 
| 175 | 
            +
                return any(k.startswith(UNET_KEY_PREFIX) for k in state_dict.keys())
         | 
| 176 | 
            +
             | 
| 177 | 
            +
             | 
| 178 | 
            +
            def load_safetensors(model, safetensors_path, strict=True, load_weight_increasement=False):
         | 
| 179 | 
            +
                if not load_weight_increasement:
         | 
| 180 | 
            +
                    state_dict = load_file(safetensors_path)
         | 
| 181 | 
            +
                    model.load_state_dict(state_dict, strict=strict)
         | 
| 182 | 
            +
                else:
         | 
| 183 | 
            +
                    state_dict = load_file(safetensors_path)
         | 
| 184 | 
            +
                    pretrained_state_dict = model.state_dict()
         | 
| 185 | 
            +
                    for k in state_dict.keys():
         | 
| 186 | 
            +
                        state_dict[k] = state_dict[k] + pretrained_state_dict[k]
         | 
| 187 | 
            +
                    model.load_state_dict(state_dict, strict=False)
         | 
| 188 | 
            +
             | 
| 189 | 
            +
             | 
| 190 | 
            +
            def log_model_info(model, name):
         | 
| 191 | 
            +
                sd = model.state_dict() if hasattr(model, "state_dict") else model
         | 
| 192 | 
            +
                print(
         | 
| 193 | 
            +
                    f"{name}:",
         | 
| 194 | 
            +
                    f"  number of parameters: {sum(p.numel() for p in sd.values())}",
         | 
| 195 | 
            +
                    f"  dtype: {sd[next(iter(sd))].dtype}",
         | 
| 196 | 
            +
                    sep='\n'
         | 
| 197 | 
            +
                )
         | 
| 198 | 
            +
             | 
| 199 | 
            +
             | 
| 200 | 
            +
            def around_reso(img_w, img_h, reso: Union[Tuple[int, int], int], divisible: Optional[int] = None, max_width=None, max_height=None) -> Tuple[int, int]:
         | 
| 201 | 
            +
                r"""
         | 
| 202 | 
            +
                w*h = reso*reso
         | 
| 203 | 
            +
                w/h = img_w/img_h
         | 
| 204 | 
            +
                => w = img_ar*h
         | 
| 205 | 
            +
                => img_ar*h^2 = reso
         | 
| 206 | 
            +
                => h = sqrt(reso / img_ar)
         | 
| 207 | 
            +
                """
         | 
| 208 | 
            +
                reso = reso if isinstance(reso, tuple) else (reso, reso)
         | 
| 209 | 
            +
                divisible = divisible or 1
         | 
| 210 | 
            +
                if img_w * img_h <= reso[0] * reso[1] and (not max_width or img_w <= max_width) and (not max_height or img_h <= max_height) and img_w % divisible == 0 and img_h % divisible == 0:
         | 
| 211 | 
            +
                    return (img_w, img_h)
         | 
| 212 | 
            +
                img_ar = img_w / img_h
         | 
| 213 | 
            +
                around_h = math.sqrt(reso[0]*reso[1] / img_ar)
         | 
| 214 | 
            +
                around_w = img_ar * around_h // divisible * divisible
         | 
| 215 | 
            +
                if max_width and around_w > max_width:
         | 
| 216 | 
            +
                    around_h = around_h * max_width // around_w
         | 
| 217 | 
            +
                    around_w = max_width
         | 
| 218 | 
            +
                elif max_height and around_h > max_height:
         | 
| 219 | 
            +
                    around_w = around_w * max_height // around_h
         | 
| 220 | 
            +
                    around_h = max_height
         | 
| 221 | 
            +
                around_h = min(around_h, max_height) if max_height else around_h
         | 
| 222 | 
            +
                around_w = min(around_w, max_width) if max_width else around_w
         | 
| 223 | 
            +
                around_h = int(around_h // divisible * divisible)
         | 
| 224 | 
            +
                around_w = int(around_w // divisible * divisible)
         | 
| 225 | 
            +
                return (around_w, around_h)
         | 
