Spaces:
Runtime error
Runtime error
Commit
·
1f8de22
1
Parent(s):
def3c19
app file created
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
from transformers import AutoConfig, AutoModel
|
8 |
+
|
9 |
+
|
10 |
+
device = torch.device('cpu')
|
11 |
+
|
12 |
+
|
13 |
+
labels = {
|
14 |
+
0: 'toxic',
|
15 |
+
1: 'severe_toxic',
|
16 |
+
2: 'obscene',
|
17 |
+
3: 'threat',
|
18 |
+
4: 'insult',
|
19 |
+
5: 'identity_hate',
|
20 |
+
}
|
21 |
+
|
22 |
+
MODEL_NAME='roberta-base'
|
23 |
+
NUM_CLASSES=6
|
24 |
+
|
25 |
+
MAX_LEN = 128
|
26 |
+
tokenizer = RobertaTokenizer.from_pretrained(MODEL_NAME, truncation=True, do_lower_case=True)
|
27 |
+
|
28 |
+
class ToxicModel(torch.nn.Module):
|
29 |
+
def __init__(self):
|
30 |
+
super(ToxicModel, self).__init__()
|
31 |
+
hidden_dropout_prob: float = 0.1
|
32 |
+
layer_norm_eps: float = 1e-7
|
33 |
+
|
34 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
35 |
+
|
36 |
+
config.update(
|
37 |
+
{
|
38 |
+
"output_hidden_states": True,
|
39 |
+
"hidden_dropout_prob": hidden_dropout_prob,
|
40 |
+
"layer_norm_eps": layer_norm_eps,
|
41 |
+
"add_pooling_layer": False,
|
42 |
+
"num_labels": NUM_CLASSES,
|
43 |
+
}
|
44 |
+
)
|
45 |
+
self.transformer = AutoModel.from_pretrained(MODEL_NAME, config=config)
|
46 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
47 |
+
self.dropout1 = nn.Dropout(0.1)
|
48 |
+
self.dropout2 = nn.Dropout(0.2)
|
49 |
+
self.dropout3 = nn.Dropout(0.3)
|
50 |
+
self.dropout4 = nn.Dropout(0.4)
|
51 |
+
self.dropout5 = nn.Dropout(0.5)
|
52 |
+
self.output = nn.Linear(config.hidden_size, NUM_CLASSES)
|
53 |
+
|
54 |
+
|
55 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
56 |
+
transformer_out = self.transformer(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
57 |
+
sequence_output = transformer_out[0]
|
58 |
+
sequence_output = self.dropout(torch.mean(sequence_output, 1))
|
59 |
+
logits1 = self.output(self.dropout1(sequence_output))
|
60 |
+
logits2 = self.output(self.dropout2(sequence_output))
|
61 |
+
logits3 = self.output(self.dropout3(sequence_output))
|
62 |
+
logits4 = self.output(self.dropout4(sequence_output))
|
63 |
+
logits5 = self.output(self.dropout5(sequence_output))
|
64 |
+
logits = (logits1 + logits2 + logits3 + logits4 + logits5) / 5
|
65 |
+
return logits
|
66 |
+
|
67 |
+
def inference_fn(model, input_ids=None, attention_mask=None, token_type_ids=None):
|
68 |
+
model.eval()
|
69 |
+
input_ids = input_ids.to(device)
|
70 |
+
attention_mask = attention_mask.to(device)
|
71 |
+
token_type_ids = token_type_ids.to(device)
|
72 |
+
|
73 |
+
with torch.no_grad():
|
74 |
+
output = model(input_ids.unsqueeze(0), attention_mask.unsqueeze(0), token_type_ids.unsqueeze(0))
|
75 |
+
out = output.sigmoid().detach().cpu().numpy().flatten()
|
76 |
+
|
77 |
+
return out
|
78 |
+
|
79 |
+
|
80 |
+
def predict(comment=None) -> dict:
|
81 |
+
text = str(comment)
|
82 |
+
text = " ".join(text.split())
|
83 |
+
|
84 |
+
inputs = tokenizer.encode_plus(
|
85 |
+
text,
|
86 |
+
None,
|
87 |
+
add_special_tokens=True,
|
88 |
+
max_length=MAX_LEN,
|
89 |
+
pad_to_max_length=True,
|
90 |
+
return_token_type_ids=True
|
91 |
+
)
|
92 |
+
ids = inputs['input_ids']
|
93 |
+
mask = inputs['attention_mask']
|
94 |
+
token_type_ids = inputs["token_type_ids"]
|
95 |
+
|
96 |
+
model = ToxicModel()
|
97 |
+
|
98 |
+
model.load_state_dict(torch.load("toxic_model_0.pth", map_location=torch.device(device)))
|
99 |
+
model.to(device)
|
100 |
+
|
101 |
+
predicted = inference_fn(model, ids, mask, token_type_ids)
|
102 |
+
|
103 |
+
return {labels[i]: float(predicted[i]) for i in range(NUM_CLASSES)}
|
104 |
+
|
105 |
+
|
106 |
+
gr.Interface(fn=predict,
|
107 |
+
inputs='text',
|
108 |
+
outputs=gr.outputs.Label(num_top_classes=NUM_CLASSES)).launch()
|