Shamima commited on
Commit
e58665e
·
1 Parent(s): 76c0991

Delete app.py.py

Browse files
Files changed (1) hide show
  1. app.py.py +0 -42
app.py.py DELETED
@@ -1,42 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """Gradio-regression.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1qmfhcPafAIfczazACroyAYyRohdQbklK
8
- """
9
- import numpy as np
10
- import matplotlib.pyplot as plt
11
- import seaborn as sns
12
- import gradio as gr
13
- from sklearn.linear_model import Ridge, LinearRegression
14
- from sklearn.model_selection import train_test_split
15
- np.random.seed(2)
16
-
17
- X = 2 * np.random.rand(100, 1)
18
- y = 4 + 3 * X
19
-
20
- X_train, X_test, y_train, y_test = train_test_split(
21
- X, y, test_size=0.1, random_state=42)
22
-
23
- def build_model(alpha):
24
- r_reg = Ridge(alpha=alpha)
25
- r_reg.fit(X_train, y_train)
26
- return r_reg
27
-
28
- def predict(alpha):
29
- ridge_reg = build_model(alpha)
30
- preds = ridge_reg.predict(X_test)
31
- fig = plt.figure()
32
- plt.plot(X_test, y_test, "r-")
33
- plt.plot(X_test, preds, "b--")
34
- plt.title("Effect of regularization parameter on Ridge regression")
35
- plt.ylabel("Y")
36
- plt.xlabel("X")
37
- return plt
38
-
39
- inputs = gr.Number()
40
- outputs = gr.Plot()
41
- gr.Interface(fn = predict, inputs = inputs, outputs = outputs).launch()
42
-