Spaces:
Runtime error
Runtime error
File size: 1,561 Bytes
f6fcb5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
from streamlit_webrtc import webrtc_streamer
import av
import mediapipe as mp
import numpy as np
mp_hands = mp.solutions.hands
mp_hands_connections = mp.solutions.hands_connections
hands = mp_hands.Hands()
mp_draw = mp.solutions.drawing_utils
connections = {
'HAND_CONNECTIONS': mp_hands_connections.HAND_CONNECTIONS,
'HAND_PALM_CONNECTIONS': mp_hands_connections.HAND_PALM_CONNECTIONS,
'HAND_THUMB_CONNECTIONS': mp_hands_connections.HAND_THUMB_CONNECTIONS,
'HAND_INDEX_FINGER_CONNECTIONS': mp_hands_connections.HAND_INDEX_FINGER_CONNECTIONS,
'HAND_MIDDLE_FINGER_CONNECTIONS': mp_hands_connections.HAND_MIDDLE_FINGER_CONNECTIONS,
'HAND_RING_FINGER_CONNECTIONS': mp_hands_connections.HAND_RING_FINGER_CONNECTIONS,
'HAND_PINKY_FINGER_CONNECTIONS': mp_hands_connections.HAND_PINKY_FINGER_CONNECTIONS,
}
draw_background = st.checkbox("Draw background", value=True)
selected_connection = st.selectbox("Select connections to draw", list(connections.keys()))
def process_hands(frame):
img = frame.to_ndarray(format="bgr24")
results = hands.process(img)
output_img = img if draw_background else np.zeros_like(img)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_draw.draw_landmarks(output_img, hand_landmarks, connections[selected_connection])
return av.VideoFrame.from_ndarray(output_img, format="bgr24")
webrtc_streamer(
key="streamer",
video_frame_callback=process_hands,
media_stream_constraints={"video": True, "audio": False},
)
|