import streamlit as st from streamlit_webrtc import webrtc_streamer import av import mediapipe as mp import numpy as np from PIL import Image mp_hands = mp.solutions.hands mp_hands_connections = mp.solutions.hands_connections hands = mp_hands.Hands() mp_draw = mp.solutions.drawing_utils connections = { 'HAND_CONNECTIONS': mp_hands_connections.HAND_CONNECTIONS, 'HAND_PALM_CONNECTIONS': mp_hands_connections.HAND_PALM_CONNECTIONS, 'HAND_THUMB_CONNECTIONS': mp_hands_connections.HAND_THUMB_CONNECTIONS, 'HAND_INDEX_FINGER_CONNECTIONS': mp_hands_connections.HAND_INDEX_FINGER_CONNECTIONS, 'HAND_MIDDLE_FINGER_CONNECTIONS': mp_hands_connections.HAND_MIDDLE_FINGER_CONNECTIONS, 'HAND_RING_FINGER_CONNECTIONS': mp_hands_connections.HAND_RING_FINGER_CONNECTIONS, 'HAND_PINKY_FINGER_CONNECTIONS': mp_hands_connections.HAND_PINKY_FINGER_CONNECTIONS, } def process_hands(img): results = hands.process(img) output_img = img if draw_background else np.zeros_like(img) if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: mp_draw.draw_landmarks(output_img, hand_landmarks, connections[selected_connection]) return output_img st.title('Hand & Finger Tracking') st.markdown("This is a demo of hand and finger tracking using [Google's MediaPipe](https://google.github.io/mediapipe/solutions/hands.html).") col1, col2 = st.columns(2) with col1: picture = st.camera_input("Take a picture") draw_background = st.checkbox("Draw background", value=True) selected_connection = st.selectbox("Select connections to draw", list(connections.keys())) with col2: if picture is not None: img = Image.open(picture) img_array = np.array(img) processed_img = process_hands(img_array) st.image(processed_img)