Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,17 +7,16 @@ from huggingface_hub import login
|
|
7 |
from flask import Flask, request, jsonify, Response
|
8 |
import gradio as gr
|
9 |
|
10 |
-
#
|
11 |
login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
|
12 |
API_TOKEN = os.getenv("HF_API_TOKEN")
|
13 |
|
14 |
-
#
|
15 |
model_name = "cerebras/btlm-3b-8k-chat"
|
16 |
revision = "main"
|
17 |
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
18 |
os.environ['HF_HOME'] = '/tmp/cache'
|
19 |
|
20 |
-
print("Loading model and tokenizer...")
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, revision=revision)
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
model_name,
|
@@ -37,7 +36,7 @@ generator = pipeline(
|
|
37 |
trust_remote_code=True
|
38 |
)
|
39 |
|
40 |
-
#
|
41 |
app = Flask(__name__)
|
42 |
|
43 |
@app.route("/")
|
@@ -116,36 +115,39 @@ def chat():
|
|
116 |
}]
|
117 |
})
|
118 |
|
119 |
-
# Gradio Chat
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
prompt = "User: {}\nAssistant:".format(message)
|
126 |
|
127 |
output = generator(
|
128 |
-
|
129 |
max_new_tokens=256,
|
130 |
temperature=0.7,
|
131 |
top_p=0.9,
|
132 |
repetition_penalty=1.1,
|
133 |
do_sample=True
|
134 |
)
|
135 |
-
reply = output[0][
|
136 |
-
history.append((
|
137 |
return history, history
|
138 |
|
139 |
with gr.Blocks() as demo:
|
140 |
-
gr.Markdown("
|
141 |
chatbot = gr.Chatbot()
|
142 |
-
msg = gr.Textbox()
|
143 |
clear = gr.Button("Clear")
|
144 |
|
145 |
-
|
146 |
-
|
|
|
|
|
147 |
|
148 |
-
|
|
|
149 |
|
|
|
150 |
if __name__ == "__main__":
|
151 |
app.run(host="0.0.0.0", port=8080)
|
|
|
7 |
from flask import Flask, request, jsonify, Response
|
8 |
import gradio as gr
|
9 |
|
10 |
+
# Hugging Face Auth
|
11 |
login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
|
12 |
API_TOKEN = os.getenv("HF_API_TOKEN")
|
13 |
|
14 |
+
# Model config
|
15 |
model_name = "cerebras/btlm-3b-8k-chat"
|
16 |
revision = "main"
|
17 |
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
18 |
os.environ['HF_HOME'] = '/tmp/cache'
|
19 |
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, revision=revision)
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
model_name,
|
|
|
36 |
trust_remote_code=True
|
37 |
)
|
38 |
|
39 |
+
# Flask backend
|
40 |
app = Flask(__name__)
|
41 |
|
42 |
@app.route("/")
|
|
|
115 |
}]
|
116 |
})
|
117 |
|
118 |
+
# ✅ Gradio Chat UI
|
119 |
+
def gradio_chat(user_input, history=[]):
|
120 |
+
full_prompt = ""
|
121 |
+
for turn in history:
|
122 |
+
full_prompt += f"User: {turn[0]}\nAssistant: {turn[1]}\n"
|
123 |
+
full_prompt += f"User: {user_input}\nAssistant:"
|
|
|
124 |
|
125 |
output = generator(
|
126 |
+
full_prompt,
|
127 |
max_new_tokens=256,
|
128 |
temperature=0.7,
|
129 |
top_p=0.9,
|
130 |
repetition_penalty=1.1,
|
131 |
do_sample=True
|
132 |
)
|
133 |
+
reply = output[0]["generated_text"].replace(full_prompt, "").strip()
|
134 |
+
history.append((user_input, reply))
|
135 |
return history, history
|
136 |
|
137 |
with gr.Blocks() as demo:
|
138 |
+
gr.Markdown("## 💬 Chat with Ariphes (LLM-powered)")
|
139 |
chatbot = gr.Chatbot()
|
140 |
+
msg = gr.Textbox(placeholder="Ask me anything...", label="Message")
|
141 |
clear = gr.Button("Clear")
|
142 |
|
143 |
+
state = gr.State([])
|
144 |
+
|
145 |
+
msg.submit(gradio_chat, [msg, state], [chatbot, state])
|
146 |
+
clear.click(lambda: ([], []), None, [chatbot, state])
|
147 |
|
148 |
+
# ✅ Enable share=True so Hugging Face can access it
|
149 |
+
demo.launch(share=True)
|
150 |
|
151 |
+
# ✅ Still serve API endpoint for OpenAI-compatible connector
|
152 |
if __name__ == "__main__":
|
153 |
app.run(host="0.0.0.0", port=8080)
|