format utils.py
Browse files
utils.py
CHANGED
|
@@ -11,6 +11,7 @@ import datetime
|
|
| 11 |
import glob
|
| 12 |
from dataclasses import dataclass
|
| 13 |
from typing import List, Tuple, Dict
|
|
|
|
| 14 |
# clone / pull the lmeh eval data
|
| 15 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
| 16 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
|
@@ -18,67 +19,74 @@ LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
|
| 18 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
| 19 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
| 20 |
BENCH_TO_NAME = {
|
| 21 |
-
"arc_challenge":"ARC (25-shot) ⬆️",
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
}
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
if model_name in LLAMAS:
|
| 29 |
model = model_name.split("/")[1]
|
| 30 |
return f'<a target="_blank" href="https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model}</a>'
|
| 31 |
-
|
| 32 |
if model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
| 33 |
link = "https://huggingface.co/" + "CarperAI/stable-vicuna-13b-delta"
|
| 34 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">stable-vicuna-13b</a>'
|
| 35 |
-
|
| 36 |
if model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
| 37 |
link = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
| 38 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">alpaca-13b</a>'
|
| 39 |
|
| 40 |
# remove user from model name
|
| 41 |
-
#model_name_show = ' '.join(model_name.split('/')[1:])
|
| 42 |
|
| 43 |
link = "https://huggingface.co/" + model_name
|
| 44 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 45 |
|
|
|
|
| 46 |
@dataclass
|
| 47 |
class EvalResult:
|
| 48 |
-
eval_name
|
| 49 |
-
org
|
| 50 |
-
model
|
| 51 |
-
revision
|
| 52 |
-
is_8bit
|
| 53 |
-
results
|
| 54 |
-
|
| 55 |
def to_dict(self):
|
| 56 |
-
|
| 57 |
if self.org is not None:
|
| 58 |
-
base_model =f"{self.org}/{self.model}"
|
| 59 |
else:
|
| 60 |
-
base_model =f"{self.model}"
|
| 61 |
data_dict = {}
|
| 62 |
-
|
| 63 |
data_dict["eval_name"] = self.eval_name
|
| 64 |
data_dict["8bit"] = self.is_8bit
|
| 65 |
data_dict["Model"] = make_clickable_model(base_model)
|
| 66 |
data_dict["Revision"] = self.revision
|
| 67 |
-
data_dict["Average ⬆️"] = round(
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
for benchmark in BENCHMARKS:
|
| 71 |
if not benchmark in self.results.keys():
|
| 72 |
self.results[benchmark] = None
|
| 73 |
-
|
| 74 |
-
for k,v in BENCH_TO_NAME.items():
|
| 75 |
data_dict[v] = self.results[k]
|
| 76 |
-
|
| 77 |
return data_dict
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
|
| 83 |
with open(json_filepath) as fp:
|
| 84 |
data = json.load(fp)
|
|
@@ -88,49 +96,60 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
|
|
| 88 |
model = path_split[-4]
|
| 89 |
is_8bit = path_split[-2] == "8bit"
|
| 90 |
revision = path_split[-3]
|
| 91 |
-
if len(path_split)== 7:
|
| 92 |
# handles gpt2 type models that don't have an org
|
| 93 |
result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
|
| 94 |
else:
|
| 95 |
-
result_key =
|
|
|
|
|
|
|
| 96 |
org = path_split[-5]
|
| 97 |
-
|
| 98 |
eval_result = None
|
| 99 |
-
for benchmark, metric
|
| 100 |
if benchmark in json_filepath:
|
| 101 |
accs = np.array([v[metric] for k, v in data["results"].items()])
|
| 102 |
-
mean_acc = round(np.mean(accs)*100.0,1)
|
| 103 |
-
eval_result = EvalResult(
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
return result_key, eval_result
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
def get_eval_results(is_public) -> List[EvalResult]:
|
| 111 |
-
json_filepaths = glob.glob(
|
|
|
|
|
|
|
| 112 |
if not is_public:
|
| 113 |
-
json_filepaths += glob.glob(
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
eval_results = {}
|
| 117 |
-
|
| 118 |
for json_filepath in json_filepaths:
|
| 119 |
result_key, eval_result = parse_eval_result(json_filepath)
|
| 120 |
if result_key in eval_results.keys():
|
| 121 |
eval_results[result_key].results.update(eval_result.results)
|
| 122 |
else:
|
| 123 |
eval_results[result_key] = eval_result
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
return eval_results
|
| 129 |
-
|
|
|
|
| 130 |
def get_eval_results_dicts(is_public=True) -> List[Dict]:
|
| 131 |
eval_results = get_eval_results(is_public)
|
| 132 |
-
|
| 133 |
return [e.to_dict() for e in eval_results]
|
| 134 |
|
|
|
|
| 135 |
eval_results_dict = get_eval_results_dicts()
|
| 136 |
# print(eval_results_dict)
|
|
|
|
| 11 |
import glob
|
| 12 |
from dataclasses import dataclass
|
| 13 |
from typing import List, Tuple, Dict
|
| 14 |
+
|
| 15 |
# clone / pull the lmeh eval data
|
| 16 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
| 17 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
|
|
|
| 19 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
| 20 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
| 21 |
BENCH_TO_NAME = {
|
| 22 |
+
"arc_challenge": "ARC (25-shot) ⬆️",
|
| 23 |
+
"hellaswag": "HellaSwag (10-shot) ⬆️",
|
| 24 |
+
"hendrycks": "MMLU (5-shot) ⬆️",
|
| 25 |
+
"truthfulqa_mc": "TruthfulQA (0-shot) ⬆️",
|
| 26 |
}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def make_clickable_model(model_name):
|
| 30 |
+
LLAMAS = [
|
| 31 |
+
"huggingface/llama-7b",
|
| 32 |
+
"huggingface/llama-13b",
|
| 33 |
+
"huggingface/llama-30b",
|
| 34 |
+
"huggingface/llama-65b",
|
| 35 |
+
]
|
| 36 |
if model_name in LLAMAS:
|
| 37 |
model = model_name.split("/")[1]
|
| 38 |
return f'<a target="_blank" href="https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model}</a>'
|
| 39 |
+
|
| 40 |
if model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
| 41 |
link = "https://huggingface.co/" + "CarperAI/stable-vicuna-13b-delta"
|
| 42 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">stable-vicuna-13b</a>'
|
| 43 |
+
|
| 44 |
if model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
| 45 |
link = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
| 46 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">alpaca-13b</a>'
|
| 47 |
|
| 48 |
# remove user from model name
|
| 49 |
+
# model_name_show = ' '.join(model_name.split('/')[1:])
|
| 50 |
|
| 51 |
link = "https://huggingface.co/" + model_name
|
| 52 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 53 |
|
| 54 |
+
|
| 55 |
@dataclass
|
| 56 |
class EvalResult:
|
| 57 |
+
eval_name: str
|
| 58 |
+
org: str
|
| 59 |
+
model: str
|
| 60 |
+
revision: str
|
| 61 |
+
is_8bit: bool
|
| 62 |
+
results: dict
|
| 63 |
+
|
| 64 |
def to_dict(self):
|
|
|
|
| 65 |
if self.org is not None:
|
| 66 |
+
base_model = f"{self.org}/{self.model}"
|
| 67 |
else:
|
| 68 |
+
base_model = f"{self.model}"
|
| 69 |
data_dict = {}
|
| 70 |
+
|
| 71 |
data_dict["eval_name"] = self.eval_name
|
| 72 |
data_dict["8bit"] = self.is_8bit
|
| 73 |
data_dict["Model"] = make_clickable_model(base_model)
|
| 74 |
data_dict["Revision"] = self.revision
|
| 75 |
+
data_dict["Average ⬆️"] = round(
|
| 76 |
+
sum([v for k, v in self.results.items()]) / 4.0, 1
|
| 77 |
+
)
|
| 78 |
+
# data_dict["# params"] = get_n_params(base_model)
|
| 79 |
+
|
| 80 |
for benchmark in BENCHMARKS:
|
| 81 |
if not benchmark in self.results.keys():
|
| 82 |
self.results[benchmark] = None
|
| 83 |
+
|
| 84 |
+
for k, v in BENCH_TO_NAME.items():
|
| 85 |
data_dict[v] = self.results[k]
|
| 86 |
+
|
| 87 |
return data_dict
|
| 88 |
+
|
| 89 |
+
|
|
|
|
|
|
|
| 90 |
def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
|
| 91 |
with open(json_filepath) as fp:
|
| 92 |
data = json.load(fp)
|
|
|
|
| 96 |
model = path_split[-4]
|
| 97 |
is_8bit = path_split[-2] == "8bit"
|
| 98 |
revision = path_split[-3]
|
| 99 |
+
if len(path_split) == 7:
|
| 100 |
# handles gpt2 type models that don't have an org
|
| 101 |
result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
|
| 102 |
else:
|
| 103 |
+
result_key = (
|
| 104 |
+
f"{path_split[-5]}_{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
|
| 105 |
+
)
|
| 106 |
org = path_split[-5]
|
| 107 |
+
|
| 108 |
eval_result = None
|
| 109 |
+
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
| 110 |
if benchmark in json_filepath:
|
| 111 |
accs = np.array([v[metric] for k, v in data["results"].items()])
|
| 112 |
+
mean_acc = round(np.mean(accs) * 100.0, 1)
|
| 113 |
+
eval_result = EvalResult(
|
| 114 |
+
result_key, org, model, revision, is_8bit, {benchmark: mean_acc}
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
return result_key, eval_result
|
| 118 |
+
|
| 119 |
+
|
|
|
|
|
|
|
| 120 |
def get_eval_results(is_public) -> List[EvalResult]:
|
| 121 |
+
json_filepaths = glob.glob(
|
| 122 |
+
"evals/eval_results/public/**/16bit/*.json", recursive=True
|
| 123 |
+
)
|
| 124 |
if not is_public:
|
| 125 |
+
json_filepaths += glob.glob(
|
| 126 |
+
"evals/eval_results/private/**/*.json", recursive=True
|
| 127 |
+
)
|
| 128 |
+
json_filepaths += glob.glob(
|
| 129 |
+
"evals/eval_results/private/**/*.json", recursive=True
|
| 130 |
+
)
|
| 131 |
+
json_filepaths += glob.glob(
|
| 132 |
+
"evals/eval_results/public/**/8bit/*.json", recursive=True
|
| 133 |
+
) # include the 8bit evals of public models
|
| 134 |
eval_results = {}
|
| 135 |
+
|
| 136 |
for json_filepath in json_filepaths:
|
| 137 |
result_key, eval_result = parse_eval_result(json_filepath)
|
| 138 |
if result_key in eval_results.keys():
|
| 139 |
eval_results[result_key].results.update(eval_result.results)
|
| 140 |
else:
|
| 141 |
eval_results[result_key] = eval_result
|
| 142 |
+
|
| 143 |
+
eval_results = [v for k, v in eval_results.items()]
|
| 144 |
+
|
|
|
|
| 145 |
return eval_results
|
| 146 |
+
|
| 147 |
+
|
| 148 |
def get_eval_results_dicts(is_public=True) -> List[Dict]:
|
| 149 |
eval_results = get_eval_results(is_public)
|
| 150 |
+
|
| 151 |
return [e.to_dict() for e in eval_results]
|
| 152 |
|
| 153 |
+
|
| 154 |
eval_results_dict = get_eval_results_dicts()
|
| 155 |
# print(eval_results_dict)
|