Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +32 -13
- app.py +54 -0
- packages.txt +1 -0
- requirements.txt +8 -0
- test.mp3 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test.mp3 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,32 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Suno 音乐分离工具
|
2 |
+
|
3 |
+
这是一个基于Facebook Research的Demucs v4 AI模型的音乐分离工具,可以将音乐分离为人声和伴奏两个部分。
|
4 |
+
|
5 |
+
## 功能特点
|
6 |
+
|
7 |
+
- 支持多种音频格式(mp3、wav等)
|
8 |
+
- 高质量的人声和伴奏分离
|
9 |
+
- 简洁易用的界面
|
10 |
+
- 快速处理
|
11 |
+
|
12 |
+
## 使用方法
|
13 |
+
|
14 |
+
1. 上传您想要分离的音频文件
|
15 |
+
2. 点击"提交"按钮
|
16 |
+
3. 等待处理完成后,可以下载分离后的人声和伴奏
|
17 |
+
|
18 |
+
## 技术说明
|
19 |
+
|
20 |
+
- 使用Facebook Research的[Demucs v4](https://github.com/facebookresearch/demucs) AI模型进行音频分离
|
21 |
+
- 基于Gradio构建用户界面
|
22 |
+
- 支持大多数常见音频格式
|
23 |
+
|
24 |
+
## 示例文件
|
25 |
+
|
26 |
+
应用中提供了一个测试音频文件,您可以直接使用它来测试分离效果。
|
27 |
+
|
28 |
+
## 注意事项
|
29 |
+
|
30 |
+
- 分离质量取决于原始音频的质量和特性
|
31 |
+
- 处理时间取决于音频长度和服务器负载
|
32 |
+
- 大文件处理可能需要更长时间
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from scipy.io.wavfile import write
|
4 |
+
import tempfile
|
5 |
+
import shutil
|
6 |
+
|
7 |
+
def inference(audio_file):
|
8 |
+
"""处理上传的音频文件并分离人声和伴奏"""
|
9 |
+
# 创建输出目录
|
10 |
+
os.makedirs("out", exist_ok=True)
|
11 |
+
|
12 |
+
# 使用demucs分离音频
|
13 |
+
output_dir = "out"
|
14 |
+
os.system(f"python -m demucs.separate -n htdemucs --two-stems=vocals '{audio_file}' -o {output_dir}")
|
15 |
+
|
16 |
+
# 获取分离后的文件路径
|
17 |
+
base_name = os.path.basename(audio_file)
|
18 |
+
name_without_ext = os.path.splitext(base_name)[0]
|
19 |
+
|
20 |
+
vocals_path = os.path.join(output_dir, "htdemucs", name_without_ext, "vocals.wav")
|
21 |
+
no_vocals_path = os.path.join(output_dir, "htdemucs", name_without_ext, "no_vocals.wav")
|
22 |
+
|
23 |
+
return vocals_path, no_vocals_path
|
24 |
+
|
25 |
+
# 创建API接口
|
26 |
+
title = "Suno 音乐分离工具"
|
27 |
+
description = """
|
28 |
+
### 使用说明
|
29 |
+
1. 上传音频文件(支持mp3、wav等格式)
|
30 |
+
2. 点击"提交"按钮
|
31 |
+
3. 等待处理完成后下载分离后的人声和伴奏
|
32 |
+
|
33 |
+
### 技术说明
|
34 |
+
- 本工具使用Facebook Research的Demucs v4 AI模型进行音频分离
|
35 |
+
- 分离质量取决于原始音频的质量和特性
|
36 |
+
"""
|
37 |
+
|
38 |
+
# 创建应用界面
|
39 |
+
demo = gr.Interface(
|
40 |
+
fn=inference,
|
41 |
+
inputs=gr.Audio(type="filepath", label="上传音频文件"),
|
42 |
+
outputs=[
|
43 |
+
gr.Audio(type="filepath", label="人声"),
|
44 |
+
gr.Audio(type="filepath", label="伴奏")
|
45 |
+
],
|
46 |
+
title=title,
|
47 |
+
description=description,
|
48 |
+
theme="huggingface",
|
49 |
+
examples=[["test.mp3"]]
|
50 |
+
)
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
# 启动服务器
|
54 |
+
demo.launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/facebookresearch/demucs#egg=demucs
|
2 |
+
scipy
|
3 |
+
invisible-watermark
|
4 |
+
fonts
|
5 |
+
font-roboto
|
6 |
+
numpy<1.26
|
7 |
+
gradio>=3.50.0
|
8 |
+
|
test.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b431d535d235bd81b62f816f08c3f1afb6679d2706d84b3b75903b7df909507
|
3 |
+
size 262867
|