Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import os | |
| import gradio as gr | |
| import torch | |
| from PIL import image | |
| os.environ["WANDB_DISABLED"] = "true" | |
| from datasets import load_dataset, load_metric | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForSequenceClassification, | |
| AutoTokenizer, | |
| TrainingArguments, | |
| logging, | |
| pipeline | |
| ) | |
| id2label = {0: "negative", 1: "neutral", 2: "positive"} | |
| label2id = {"negative": 0, "neutral": 1, "positive": 2} | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| model="FFZG-cleopatra/M2SA", | |
| num_labels=3, id2label=id2label, | |
| label2id=label2id | |
| ) | |
| def predict_sentiment(text, image): | |
| print(text, image) | |
| prediction = None | |
| with torch.no_grad(): | |
| model(x) | |
| print(analyzer(x)) | |
| return prediction | |
| interface = gr.Interface( | |
| fn=lambda text, image: predict_sentiment(text, image), | |
| inputs=[gr.inputs.Textbox(),gr.inputs.Image(shape=(224, 224))], | |
| outputs=['text'], | |
| title='Multilingual-Multimodal-Sentiment-Analysis', | |
| examples= ["I love tea","I hate coffee"], | |
| description='Get the positive/neutral/negative sentiment for the given input.' | |
| ) | |
| interface.launch(inline = False) | |