Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,32 +1,44 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
| 4 |
|
| 5 |
os.environ["WANDB_DISABLED"] = "true"
|
| 6 |
|
| 7 |
from datasets import load_dataset, load_metric
|
| 8 |
from transformers import (
|
| 9 |
AutoConfig,
|
| 10 |
-
|
| 11 |
AutoTokenizer,
|
| 12 |
TrainingArguments,
|
| 13 |
logging,
|
| 14 |
pipeline
|
| 15 |
)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
analyzer = pipeline(
|
| 19 |
-
"sentiment-analysis", model="FFZG-cleopatra/M2SA"
|
| 20 |
-
)
|
| 21 |
|
| 22 |
-
def predict_sentiment(
|
| 23 |
-
print(
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
interface = gr.Interface(
|
| 28 |
-
fn=predict_sentiment,
|
| 29 |
-
inputs=
|
| 30 |
outputs=['text'],
|
| 31 |
title='Multilingual-Multimodal-Sentiment-Analysis',
|
| 32 |
examples= ["I love tea","I hate coffee"],
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import image
|
| 6 |
|
| 7 |
os.environ["WANDB_DISABLED"] = "true"
|
| 8 |
|
| 9 |
from datasets import load_dataset, load_metric
|
| 10 |
from transformers import (
|
| 11 |
AutoConfig,
|
| 12 |
+
AutoModelForSequenceClassification,
|
| 13 |
AutoTokenizer,
|
| 14 |
TrainingArguments,
|
| 15 |
logging,
|
| 16 |
pipeline
|
| 17 |
)
|
| 18 |
|
| 19 |
+
id2label = {0: "negative", 1: "neutral", 2: "positive"}
|
| 20 |
+
label2id = {"negative": 0, "neutral": 1, "positive": 2}
|
| 21 |
+
|
| 22 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 23 |
+
model="FFZG-cleopatra/M2SA",
|
| 24 |
+
num_labels=3, id2label=id2label,
|
| 25 |
+
label2id=label2id
|
| 26 |
+
)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def predict_sentiment(text, image):
|
| 30 |
+
print(text, image)
|
| 31 |
+
prediction = None
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
model(x)
|
| 34 |
+
print(analyzer(x))
|
| 35 |
+
|
| 36 |
+
return prediction
|
| 37 |
|
| 38 |
|
| 39 |
interface = gr.Interface(
|
| 40 |
+
fn=lambda text, image: predict_sentiment(text, image),,
|
| 41 |
+
inputs=[gr.inputs.Textbox(),gr.inputs.Image(shape=(224, 224))]
|
| 42 |
outputs=['text'],
|
| 43 |
title='Multilingual-Multimodal-Sentiment-Analysis',
|
| 44 |
examples= ["I love tea","I hate coffee"],
|