|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | from typing import Any, Dict, Iterable, List, Optional | 
					
						
						|  | from fvcore.common.timer import Timer | 
					
						
						|  |  | 
					
						
						|  | from detectron2.data import DatasetCatalog, MetadataCatalog | 
					
						
						|  | from detectron2.data.datasets.lvis import get_lvis_instances_meta | 
					
						
						|  | from detectron2.structures import BoxMode | 
					
						
						|  | from detectron2.utils.file_io import PathManager | 
					
						
						|  |  | 
					
						
						|  | from ..utils import maybe_prepend_base_path | 
					
						
						|  | from .coco import ( | 
					
						
						|  | DENSEPOSE_ALL_POSSIBLE_KEYS, | 
					
						
						|  | DENSEPOSE_METADATA_URL_PREFIX, | 
					
						
						|  | CocoDatasetInfo, | 
					
						
						|  | get_metadata, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | DATASETS = [ | 
					
						
						|  | CocoDatasetInfo( | 
					
						
						|  | name="densepose_lvis_v1_ds1_train_v1", | 
					
						
						|  | images_root="coco_", | 
					
						
						|  | annotations_fpath="lvis/densepose_lvis_v1_ds1_train_v1.json", | 
					
						
						|  | ), | 
					
						
						|  | CocoDatasetInfo( | 
					
						
						|  | name="densepose_lvis_v1_ds1_val_v1", | 
					
						
						|  | images_root="coco_", | 
					
						
						|  | annotations_fpath="lvis/densepose_lvis_v1_ds1_val_v1.json", | 
					
						
						|  | ), | 
					
						
						|  | CocoDatasetInfo( | 
					
						
						|  | name="densepose_lvis_v1_ds2_train_v1", | 
					
						
						|  | images_root="coco_", | 
					
						
						|  | annotations_fpath="lvis/densepose_lvis_v1_ds2_train_v1.json", | 
					
						
						|  | ), | 
					
						
						|  | CocoDatasetInfo( | 
					
						
						|  | name="densepose_lvis_v1_ds2_val_v1", | 
					
						
						|  | images_root="coco_", | 
					
						
						|  | annotations_fpath="lvis/densepose_lvis_v1_ds2_val_v1.json", | 
					
						
						|  | ), | 
					
						
						|  | CocoDatasetInfo( | 
					
						
						|  | name="densepose_lvis_v1_ds1_val_animals_100", | 
					
						
						|  | images_root="coco_", | 
					
						
						|  | annotations_fpath="lvis/densepose_lvis_v1_val_animals_100_v2.json", | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _load_lvis_annotations(json_file: str): | 
					
						
						|  | """ | 
					
						
						|  | Load COCO annotations from a JSON file | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | json_file: str | 
					
						
						|  | Path to the file to load annotations from | 
					
						
						|  | Returns: | 
					
						
						|  | Instance of `pycocotools.coco.COCO` that provides access to annotations | 
					
						
						|  | data | 
					
						
						|  | """ | 
					
						
						|  | from lvis import LVIS | 
					
						
						|  |  | 
					
						
						|  | json_file = PathManager.get_local_path(json_file) | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  | timer = Timer() | 
					
						
						|  | lvis_api = LVIS(json_file) | 
					
						
						|  | if timer.seconds() > 1: | 
					
						
						|  | logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) | 
					
						
						|  | return lvis_api | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _add_categories_metadata(dataset_name: str) -> None: | 
					
						
						|  | metadict = get_lvis_instances_meta(dataset_name) | 
					
						
						|  | categories = metadict["thing_classes"] | 
					
						
						|  | metadata = MetadataCatalog.get(dataset_name) | 
					
						
						|  | metadata.categories = {i + 1: categories[i] for i in range(len(categories))} | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  | logger.info(f"Dataset {dataset_name} has {len(categories)} categories") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]) -> None: | 
					
						
						|  | ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] | 
					
						
						|  | assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format( | 
					
						
						|  | json_file | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | 
					
						
						|  | if "bbox" not in ann_dict: | 
					
						
						|  | return | 
					
						
						|  | obj["bbox"] = ann_dict["bbox"] | 
					
						
						|  | obj["bbox_mode"] = BoxMode.XYWH_ABS | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | 
					
						
						|  | if "segmentation" not in ann_dict: | 
					
						
						|  | return | 
					
						
						|  | segm = ann_dict["segmentation"] | 
					
						
						|  | if not isinstance(segm, dict): | 
					
						
						|  |  | 
					
						
						|  | segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] | 
					
						
						|  | if len(segm) == 0: | 
					
						
						|  | return | 
					
						
						|  | obj["segmentation"] = segm | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | 
					
						
						|  | if "keypoints" not in ann_dict: | 
					
						
						|  | return | 
					
						
						|  | keypts = ann_dict["keypoints"] | 
					
						
						|  | for idx, v in enumerate(keypts): | 
					
						
						|  | if idx % 3 != 2: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | keypts[idx] = v + 0.5 | 
					
						
						|  | obj["keypoints"] = keypts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None: | 
					
						
						|  | for key in DENSEPOSE_ALL_POSSIBLE_KEYS: | 
					
						
						|  | if key in ann_dict: | 
					
						
						|  | obj[key] = ann_dict[key] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _combine_images_with_annotations( | 
					
						
						|  | dataset_name: str, | 
					
						
						|  | image_root: str, | 
					
						
						|  | img_datas: Iterable[Dict[str, Any]], | 
					
						
						|  | ann_datas: Iterable[Iterable[Dict[str, Any]]], | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | dataset_dicts = [] | 
					
						
						|  |  | 
					
						
						|  | def get_file_name(img_root, img_dict): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | split_folder, file_name = img_dict["coco_url"].split("/")[-2:] | 
					
						
						|  | return os.path.join(img_root + split_folder, file_name) | 
					
						
						|  |  | 
					
						
						|  | for img_dict, ann_dicts in zip(img_datas, ann_datas): | 
					
						
						|  | record = {} | 
					
						
						|  | record["file_name"] = get_file_name(image_root, img_dict) | 
					
						
						|  | record["height"] = img_dict["height"] | 
					
						
						|  | record["width"] = img_dict["width"] | 
					
						
						|  | record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", []) | 
					
						
						|  | record["neg_category_ids"] = img_dict.get("neg_category_ids", []) | 
					
						
						|  | record["image_id"] = img_dict["id"] | 
					
						
						|  | record["dataset"] = dataset_name | 
					
						
						|  |  | 
					
						
						|  | objs = [] | 
					
						
						|  | for ann_dict in ann_dicts: | 
					
						
						|  | assert ann_dict["image_id"] == record["image_id"] | 
					
						
						|  | obj = {} | 
					
						
						|  | _maybe_add_bbox(obj, ann_dict) | 
					
						
						|  | obj["iscrowd"] = ann_dict.get("iscrowd", 0) | 
					
						
						|  | obj["category_id"] = ann_dict["category_id"] | 
					
						
						|  | _maybe_add_segm(obj, ann_dict) | 
					
						
						|  | _maybe_add_keypoints(obj, ann_dict) | 
					
						
						|  | _maybe_add_densepose(obj, ann_dict) | 
					
						
						|  | objs.append(obj) | 
					
						
						|  | record["annotations"] = objs | 
					
						
						|  | dataset_dicts.append(record) | 
					
						
						|  | return dataset_dicts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_lvis_json(annotations_json_file: str, image_root: str, dataset_name: str): | 
					
						
						|  | """ | 
					
						
						|  | Loads a JSON file with annotations in LVIS instances format. | 
					
						
						|  | Replaces `detectron2.data.datasets.coco.load_lvis_json` to handle metadata | 
					
						
						|  | in a more flexible way. Postpones category mapping to a later stage to be | 
					
						
						|  | able to combine several datasets with different (but coherent) sets of | 
					
						
						|  | categories. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  |  | 
					
						
						|  | annotations_json_file: str | 
					
						
						|  | Path to the JSON file with annotations in COCO instances format. | 
					
						
						|  | image_root: str | 
					
						
						|  | directory that contains all the images | 
					
						
						|  | dataset_name: str | 
					
						
						|  | the name that identifies a dataset, e.g. "densepose_coco_2014_train" | 
					
						
						|  | extra_annotation_keys: Optional[List[str]] | 
					
						
						|  | If provided, these keys are used to extract additional data from | 
					
						
						|  | the annotations. | 
					
						
						|  | """ | 
					
						
						|  | lvis_api = _load_lvis_annotations(PathManager.get_local_path(annotations_json_file)) | 
					
						
						|  |  | 
					
						
						|  | _add_categories_metadata(dataset_name) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_ids = sorted(lvis_api.imgs.keys()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | imgs = lvis_api.load_imgs(img_ids) | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  | logger.info("Loaded {} images in LVIS format from {}".format(len(imgs), annotations_json_file)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] | 
					
						
						|  |  | 
					
						
						|  | _verify_annotations_have_unique_ids(annotations_json_file, anns) | 
					
						
						|  | dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns) | 
					
						
						|  | return dataset_records | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None) -> None: | 
					
						
						|  | """ | 
					
						
						|  | Registers provided LVIS DensePose dataset | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | dataset_data: CocoDatasetInfo | 
					
						
						|  | Dataset data | 
					
						
						|  | datasets_root: Optional[str] | 
					
						
						|  | Datasets root folder (default: None) | 
					
						
						|  | """ | 
					
						
						|  | annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath) | 
					
						
						|  | images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root) | 
					
						
						|  |  | 
					
						
						|  | def load_annotations(): | 
					
						
						|  | return load_lvis_json( | 
					
						
						|  | annotations_json_file=annotations_fpath, | 
					
						
						|  | image_root=images_root, | 
					
						
						|  | dataset_name=dataset_data.name, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | DatasetCatalog.register(dataset_data.name, load_annotations) | 
					
						
						|  | MetadataCatalog.get(dataset_data.name).set( | 
					
						
						|  | json_file=annotations_fpath, | 
					
						
						|  | image_root=images_root, | 
					
						
						|  | evaluator_type="lvis", | 
					
						
						|  | **get_metadata(DENSEPOSE_METADATA_URL_PREFIX), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def register_datasets( | 
					
						
						|  | datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None | 
					
						
						|  | ) -> None: | 
					
						
						|  | """ | 
					
						
						|  | Registers provided LVIS DensePose datasets | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | datasets_data: Iterable[CocoDatasetInfo] | 
					
						
						|  | An iterable of dataset datas | 
					
						
						|  | datasets_root: Optional[str] | 
					
						
						|  | Datasets root folder (default: None) | 
					
						
						|  | """ | 
					
						
						|  | for dataset_data in datasets_data: | 
					
						
						|  | register_dataset(dataset_data, datasets_root) | 
					
						
						|  |  |