import gradio as gr from transformers import pipeline # Load the new summarization model summarizer = pipeline("summarization", model="falconsai/text_summarization") def summarize_text(text): max_len = min(0.3 * len(text.split()), 200) # 30% of input length or 200 max min_len = min(0.1 * len(text.split()), 50) # 10% of input length or 50 min summary = summarizer(text, max_length=int(max_len), min_length=int(min_len), do_sample=False) return summary[0]['summary_text'] # Create Gradio Interface iface = gr.Interface( fn=summarize_text, inputs=gr.Textbox(lines=5, placeholder="Enter text to summarize"), outputs="text", title="AI Summarizer", description="Enter a long paragraph, and the AI will summarize it for you.", ) # Launch the app if __name__ == "__main__": iface.launch()