File size: 5,184 Bytes
a3c4484
 
 
 
e124052
a101f39
e124052
 
16b6bb4
 
 
 
a3c4484
e124052
 
 
 
16b6bb4
 
 
 
 
a3c4484
 
 
 
16b6bb4
a3c4484
 
 
 
16b6bb4
a3c4484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b6bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c4484
16b6bb4
 
 
 
 
 
 
a3c4484
e124052
16b6bb4
 
 
 
 
e124052
 
a101f39
 
 
 
16b6bb4
e124052
 
 
a101f39
16b6bb4
 
 
 
 
 
 
 
 
 
 
a3c4484
a101f39
856df6f
e124052
856df6f
 
e124052
 
a101f39
856df6f
e124052
16b6bb4
 
 
856df6f
e124052
16b6bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a101f39
16b6bb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import pandas as pd
from glob import glob

# Load text benchmark results
csv_results = glob("results/*.pkl")
# Load vision benchmark results
vision_results = glob("results-vision/*.pkl")
# Load CoT text benchmark results
cot_text_results = glob("results-cot/*.pkl")
# Load CoT vision benchmark results
cot_vision_results = glob("results-vision-CoT/*.pkl")

# Load the csv files into a dict with keys being name of the file and values being the data
data = {file: pd.read_pickle(file) for file in csv_results}
# Load the vision files into a dict
vision_data = {file: pd.read_pickle(file) for file in vision_results}
# Load the CoT text files into a dict
cot_text_data = {file: pd.read_pickle(file) for file in cot_text_results}
# Load the CoT vision files into a dict
cot_vision_data = {file: pd.read_pickle(file) for file in cot_vision_results}


def calculate_accuracy(df):
    return df["parsed_judge_response"].mean() * 100


def accuracy_breakdown(df):
    # 4 level accuracy
    return (df.groupby("difficulty_level")["parsed_judge_response"].mean() * 100).values


# Define the column names with icons
headers_with_icons = [
    "πŸ€– Model Name",
    "⭐ Overall",
    "πŸ“ˆ Level 1",
    "πŸ” Level 2",
    "πŸ“˜ Level 3",
    "πŸ”¬ Level 4",
]

column_names = [
    "Model Name",
    "Overall Accuracy",
    "Level 1 Accuracy",
    "Level 2 Accuracy",
    "Level 3 Accuracy",
    "Level 4 Accuracy",
]

# Function to process data
def process_data(data):
    data_for_df = []
    for file, df in data.items():
        overall_accuracy = round(calculate_accuracy(df), 2)
        breakdown_accuracy = [round(acc, 2) for acc in accuracy_breakdown(df)]
        model_name = file.split("/")[-1].replace(".pkl", "")
        data_for_df.append([model_name, overall_accuracy] + breakdown_accuracy)
    return data_for_df


# Process all data
text_data_for_df = process_data(data)
vision_data_for_df = process_data(vision_data)
cot_text_data_for_df = process_data(cot_text_data)
cot_vision_data_for_df = process_data(cot_vision_data)

# Create DataFrames
accuracy_df = pd.DataFrame(text_data_for_df, columns=column_names)
vision_accuracy_df = pd.DataFrame(vision_data_for_df, columns=column_names)
cot_text_accuracy_df = pd.DataFrame(cot_text_data_for_df, columns=column_names)
cot_vision_accuracy_df = pd.DataFrame(cot_vision_data_for_df, columns=column_names)

# Function to finalize DataFrame
def finalize_df(df):
    df = df.round(1)  # Round to one decimal place
    df = df.applymap(lambda x: f"{x:.1f}" if isinstance(x, (int, float)) else x)
    df.columns = headers_with_icons
    df.sort_values(by="⭐ Overall", ascending=False, inplace=True)
    return df


# Finalize all DataFrames
accuracy_df = finalize_df(accuracy_df)
vision_accuracy_df = finalize_df(vision_accuracy_df)
cot_text_accuracy_df = finalize_df(cot_text_accuracy_df)
cot_vision_accuracy_df = finalize_df(cot_vision_accuracy_df)


def load_heatmap(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results/{evt.value}.jpg")
    return heatmap_image


def load_vision_heatmap(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results-vision/{evt.value}.jpg")
    return heatmap_image


def load_cot_heatmap(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results-cot/{evt.value}.jpg")
    return heatmap_image


def load_cot_vision_heatmap(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results-vision-CoT/{evt.value}.jpg")
    return heatmap_image


with gr.Blocks() as demo:
    gr.Markdown("# FSM Benchmark Leaderboard")
    with gr.Tab("Text-only Benchmark"):
        gr.Markdown("# Text-only Leaderboard")
        leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons)
        gr.Markdown("## Heatmap")
        heatmap_image = gr.Image(label="", show_label=False)
        leader_board.select(fn=load_heatmap, outputs=[heatmap_image])

    with gr.Tab("Vision Benchmark"):
        gr.Markdown("# Vision Benchmark Leaderboard")
        leader_board_vision = gr.Dataframe(
            vision_accuracy_df, headers=headers_with_icons
        )
        gr.Markdown("## Heatmap")
        heatmap_image_vision = gr.Image(label="", show_label=False)
        leader_board_vision.select(
            fn=load_vision_heatmap, outputs=[heatmap_image_vision]
        )

    with gr.Tab("CoT Text-only Benchmark"):
        gr.Markdown("# CoT Text-only Leaderboard")
        cot_leader_board_text = gr.Dataframe(
            cot_text_accuracy_df, headers=headers_with_icons
        )
        gr.Markdown("## Heatmap")
        cot_heatmap_image_text = gr.Image(label="", show_label=False)
        cot_leader_board_text.select(
            fn=load_cot_heatmap, outputs=[cot_heatmap_image_text]
        )

    with gr.Tab("CoT Vision Benchmark"):
        gr.Markdown("# CoT Vision Benchmark Leaderboard")
        cot_leader_board_vision = gr.Dataframe(
            cot_vision_accuracy_df, headers=headers_with_icons
        )
        gr.Markdown("## Heatmap")
        cot_heatmap_image_vision = gr.Image(label="", show_label=False)
        cot_leader_board_vision.select(
            fn=load_cot_vision_heatmap, outputs=[cot_heatmap_image_vision]
        )

    demo.launch()