Spaces:
Sleeping
Sleeping
File size: 5,184 Bytes
a3c4484 e124052 a101f39 e124052 16b6bb4 a3c4484 e124052 16b6bb4 a3c4484 16b6bb4 a3c4484 16b6bb4 a3c4484 16b6bb4 a3c4484 16b6bb4 a3c4484 e124052 16b6bb4 e124052 a101f39 16b6bb4 e124052 a101f39 16b6bb4 a3c4484 a101f39 856df6f e124052 856df6f e124052 a101f39 856df6f e124052 16b6bb4 856df6f e124052 16b6bb4 a101f39 16b6bb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
import pandas as pd
from glob import glob
# Load text benchmark results
csv_results = glob("results/*.pkl")
# Load vision benchmark results
vision_results = glob("results-vision/*.pkl")
# Load CoT text benchmark results
cot_text_results = glob("results-cot/*.pkl")
# Load CoT vision benchmark results
cot_vision_results = glob("results-vision-CoT/*.pkl")
# Load the csv files into a dict with keys being name of the file and values being the data
data = {file: pd.read_pickle(file) for file in csv_results}
# Load the vision files into a dict
vision_data = {file: pd.read_pickle(file) for file in vision_results}
# Load the CoT text files into a dict
cot_text_data = {file: pd.read_pickle(file) for file in cot_text_results}
# Load the CoT vision files into a dict
cot_vision_data = {file: pd.read_pickle(file) for file in cot_vision_results}
def calculate_accuracy(df):
return df["parsed_judge_response"].mean() * 100
def accuracy_breakdown(df):
# 4 level accuracy
return (df.groupby("difficulty_level")["parsed_judge_response"].mean() * 100).values
# Define the column names with icons
headers_with_icons = [
"π€ Model Name",
"β Overall",
"π Level 1",
"π Level 2",
"π Level 3",
"π¬ Level 4",
]
column_names = [
"Model Name",
"Overall Accuracy",
"Level 1 Accuracy",
"Level 2 Accuracy",
"Level 3 Accuracy",
"Level 4 Accuracy",
]
# Function to process data
def process_data(data):
data_for_df = []
for file, df in data.items():
overall_accuracy = round(calculate_accuracy(df), 2)
breakdown_accuracy = [round(acc, 2) for acc in accuracy_breakdown(df)]
model_name = file.split("/")[-1].replace(".pkl", "")
data_for_df.append([model_name, overall_accuracy] + breakdown_accuracy)
return data_for_df
# Process all data
text_data_for_df = process_data(data)
vision_data_for_df = process_data(vision_data)
cot_text_data_for_df = process_data(cot_text_data)
cot_vision_data_for_df = process_data(cot_vision_data)
# Create DataFrames
accuracy_df = pd.DataFrame(text_data_for_df, columns=column_names)
vision_accuracy_df = pd.DataFrame(vision_data_for_df, columns=column_names)
cot_text_accuracy_df = pd.DataFrame(cot_text_data_for_df, columns=column_names)
cot_vision_accuracy_df = pd.DataFrame(cot_vision_data_for_df, columns=column_names)
# Function to finalize DataFrame
def finalize_df(df):
df = df.round(1) # Round to one decimal place
df = df.applymap(lambda x: f"{x:.1f}" if isinstance(x, (int, float)) else x)
df.columns = headers_with_icons
df.sort_values(by="β Overall", ascending=False, inplace=True)
return df
# Finalize all DataFrames
accuracy_df = finalize_df(accuracy_df)
vision_accuracy_df = finalize_df(vision_accuracy_df)
cot_text_accuracy_df = finalize_df(cot_text_accuracy_df)
cot_vision_accuracy_df = finalize_df(cot_vision_accuracy_df)
def load_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results/{evt.value}.jpg")
return heatmap_image
def load_vision_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results-vision/{evt.value}.jpg")
return heatmap_image
def load_cot_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results-cot/{evt.value}.jpg")
return heatmap_image
def load_cot_vision_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results-vision-CoT/{evt.value}.jpg")
return heatmap_image
with gr.Blocks() as demo:
gr.Markdown("# FSM Benchmark Leaderboard")
with gr.Tab("Text-only Benchmark"):
gr.Markdown("# Text-only Leaderboard")
leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons)
gr.Markdown("## Heatmap")
heatmap_image = gr.Image(label="", show_label=False)
leader_board.select(fn=load_heatmap, outputs=[heatmap_image])
with gr.Tab("Vision Benchmark"):
gr.Markdown("# Vision Benchmark Leaderboard")
leader_board_vision = gr.Dataframe(
vision_accuracy_df, headers=headers_with_icons
)
gr.Markdown("## Heatmap")
heatmap_image_vision = gr.Image(label="", show_label=False)
leader_board_vision.select(
fn=load_vision_heatmap, outputs=[heatmap_image_vision]
)
with gr.Tab("CoT Text-only Benchmark"):
gr.Markdown("# CoT Text-only Leaderboard")
cot_leader_board_text = gr.Dataframe(
cot_text_accuracy_df, headers=headers_with_icons
)
gr.Markdown("## Heatmap")
cot_heatmap_image_text = gr.Image(label="", show_label=False)
cot_leader_board_text.select(
fn=load_cot_heatmap, outputs=[cot_heatmap_image_text]
)
with gr.Tab("CoT Vision Benchmark"):
gr.Markdown("# CoT Vision Benchmark Leaderboard")
cot_leader_board_vision = gr.Dataframe(
cot_vision_accuracy_df, headers=headers_with_icons
)
gr.Markdown("## Heatmap")
cot_heatmap_image_vision = gr.Image(label="", show_label=False)
cot_leader_board_vision.select(
fn=load_cot_vision_heatmap, outputs=[cot_heatmap_image_vision]
)
demo.launch()
|