diff --git "a/app_v2v.py" "b/app_v2v.py" --- "a/app_v2v.py" +++ "b/app_v2v.py" @@ -1,1053 +1,1053 @@ -from diffusers_helper.hf_login import login - -import os - -os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) - -import spaces -import gradio as gr -import torch -import traceback -import einops -import safetensors.torch as sf -import numpy as np -import argparse -import random -import math -# 20250506 pftq: Added for video input loading -import decord -# 20250506 pftq: Added for progress bars in video_encode -from tqdm import tqdm -# 20250506 pftq: Normalize file paths for Windows compatibility -import pathlib -# 20250506 pftq: for easier to read timestamp -from datetime import datetime -# 20250508 pftq: for saving prompt to mp4 comments metadata -import imageio_ffmpeg -import tempfile -import shutil -import subprocess - -from PIL import Image -from diffusers import AutoencoderKLHunyuanVideo -from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer -from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake -from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp -from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked -from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan -from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete -from diffusers_helper.thread_utils import AsyncStream, async_run -from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html -from transformers import SiglipImageProcessor, SiglipVisionModel -from diffusers_helper.clip_vision import hf_clip_vision_encode -from diffusers_helper.bucket_tools import find_nearest_bucket -from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline - -if torch.cuda.device_count() > 0: - free_mem_gb = get_cuda_free_memory_gb(gpu) - high_vram = free_mem_gb > 60 - - print(f'Free VRAM {free_mem_gb} GB') - print(f'High-VRAM Mode: {high_vram}') - - - - text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu() - text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu() - tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') - tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') - vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu() - - feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') - image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu() - - transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu() - - vae.eval() - text_encoder.eval() - text_encoder_2.eval() - image_encoder.eval() - transformer.eval() - - if not high_vram: - vae.enable_slicing() - vae.enable_tiling() - - transformer.high_quality_fp32_output_for_inference = True - print('transformer.high_quality_fp32_output_for_inference = True') - - transformer.to(dtype=torch.bfloat16) - vae.to(dtype=torch.float16) - image_encoder.to(dtype=torch.float16) - text_encoder.to(dtype=torch.float16) - text_encoder_2.to(dtype=torch.float16) - - vae.requires_grad_(False) - text_encoder.requires_grad_(False) - text_encoder_2.requires_grad_(False) - image_encoder.requires_grad_(False) - transformer.requires_grad_(False) - - if not high_vram: - # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster - DynamicSwapInstaller.install_model(transformer, device=gpu) - DynamicSwapInstaller.install_model(text_encoder, device=gpu) - else: - text_encoder.to(gpu) - text_encoder_2.to(gpu) - image_encoder.to(gpu) - vae.to(gpu) - transformer.to(gpu) - -stream = AsyncStream() - -outputs_folder = './outputs/' -os.makedirs(outputs_folder, exist_ok=True) - -input_image_debug_value = prompt_debug_value = total_second_length_debug_value = None - -@spaces.GPU() -@torch.no_grad() -def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None): - """ - Encode a video into latent representations using the VAE. - - Args: - video_path: Path to the input video file. - vae: AutoencoderKLHunyuanVideo model. - height, width: Target resolution for resizing frames. - vae_batch_size: Number of frames to process per batch. - device: Device for computation (e.g., "cuda"). - - Returns: - start_latent: Latent of the first frame (for compatibility with original code). - input_image_np: First frame as numpy array (for CLIP vision encoding). - history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]). - fps: Frames per second of the input video. - """ - # 20250506 pftq: Normalize video path for Windows compatibility - video_path = str(pathlib.Path(video_path).resolve()) - print(f"Processing video: {video_path}") - - # 20250506 pftq: Check CUDA availability and fallback to CPU if needed - if device == "cuda" and not torch.cuda.is_available(): - print("CUDA is not available, falling back to CPU") - device = "cpu" - - try: - # 20250506 pftq: Load video and get FPS - print("Initializing VideoReader...") - vr = decord.VideoReader(video_path) - fps = vr.get_avg_fps() # Get input video FPS - num_real_frames = len(vr) - print(f"Video loaded: {num_real_frames} frames, FPS: {fps}") - - # Truncate to nearest latent size (multiple of 4) - latent_size_factor = 4 - num_frames = (num_real_frames // latent_size_factor) * latent_size_factor - if num_frames != num_real_frames: - print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility") - num_real_frames = num_frames - - # 20250506 pftq: Read frames - print("Reading video frames...") - frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels) - print(f"Frames read: {frames.shape}") - - # 20250506 pftq: Get native video resolution - native_height, native_width = frames.shape[1], frames.shape[2] - print(f"Native video resolution: {native_width}x{native_height}") - - # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values - target_height = native_height if height is None else height - target_width = native_width if width is None else width - - # 20250506 pftq: Adjust to nearest bucket for model compatibility - if not no_resize: - target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution) - print(f"Adjusted resolution: {target_width}x{target_height}") - else: - print(f"Using native resolution without resizing: {target_width}x{target_height}") - - # 20250506 pftq: Preprocess frames to match original image processing - processed_frames = [] - for i, frame in enumerate(frames): - #print(f"Preprocessing frame {i+1}/{num_frames}") - frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height) - processed_frames.append(frame_np) - processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels) - print(f"Frames preprocessed: {processed_frames.shape}") - - # 20250506 pftq: Save first frame for CLIP vision encoding - input_image_np = processed_frames[0] - - # 20250506 pftq: Convert to tensor and normalize to [-1, 1] - print("Converting frames to tensor...") - frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1 - frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width) - frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width) - frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width) - print(f"Tensor shape: {frames_pt.shape}") - - # 20250507 pftq: Save pixel frames for use in worker - input_video_pixels = frames_pt.cpu() - - # 20250506 pftq: Move to device - print(f"Moving tensor to device: {device}") - frames_pt = frames_pt.to(device) - print("Tensor moved to device") - - # 20250506 pftq: Move VAE to device - print(f"Moving VAE to device: {device}") - vae.to(device) - print("VAE moved to device") - - # 20250506 pftq: Encode frames in batches - print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)") - latents = [] - vae.eval() - with torch.no_grad(): - for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1): - #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}") - batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width) - try: - # 20250506 pftq: Log GPU memory before encoding - if device == "cuda": - free_mem = torch.cuda.memory_allocated() / 1024**3 - #print(f"GPU memory before encoding: {free_mem:.2f} GB") - batch_latent = vae_encode(batch, vae) - # 20250506 pftq: Synchronize CUDA to catch issues - if device == "cuda": - torch.cuda.synchronize() - #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB") - latents.append(batch_latent) - #print(f"Batch encoded, latent shape: {batch_latent.shape}") - except RuntimeError as e: - print(f"Error during VAE encoding: {str(e)}") - if device == "cuda" and "out of memory" in str(e).lower(): - print("CUDA out of memory, try reducing vae_batch_size or using CPU") - raise - - # 20250506 pftq: Concatenate latents - print("Concatenating latents...") - history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8) - print(f"History latents shape: {history_latents.shape}") - - # 20250506 pftq: Get first frame's latent - start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8) - print(f"Start latent shape: {start_latent.shape}") - - # 20250506 pftq: Move VAE back to CPU to free GPU memory - if device == "cuda": - vae.to(cpu) - torch.cuda.empty_cache() - print("VAE moved back to CPU, CUDA cache cleared") - - return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels - - except Exception as e: - print(f"Error in video_encode: {str(e)}") - raise - -# 20250508 pftq: for saving prompt to mp4 metadata comments -def set_mp4_comments_imageio_ffmpeg(input_file, comments): - try: - # Get the path to the bundled FFmpeg binary from imageio-ffmpeg - ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe() - - # Check if input file exists - if not os.path.exists(input_file): - print(f"Error: Input file {input_file} does not exist") - return False - - # Create a temporary file path - temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name - - # FFmpeg command using the bundled binary - command = [ - ffmpeg_path, # Use imageio-ffmpeg's FFmpeg - '-i', input_file, # input file - '-metadata', f'comment={comments}', # set comment metadata - '-c:v', 'copy', # copy video stream without re-encoding - '-c:a', 'copy', # copy audio stream without re-encoding - '-y', # overwrite output file if it exists - temp_file # temporary output file - ] - - # Run the FFmpeg command - result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) - - if result.returncode == 0: - # Replace the original file with the modified one - shutil.move(temp_file, input_file) - print(f"Successfully added comments to {input_file}") - return True - else: - # Clean up temp file if FFmpeg fails - if os.path.exists(temp_file): - os.remove(temp_file) - print(f"Error: FFmpeg failed with message:\n{result.stderr}") - return False - - except Exception as e: - # Clean up temp file in case of other errors - if 'temp_file' in locals() and os.path.exists(temp_file): - os.remove(temp_file) - print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e)) - return False - -@torch.no_grad() -def worker(input_image, prompts, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf): - def encode_prompt(prompt, n_prompt): - llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) - - if cfg == 1: - llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) - else: - llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) - - llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) - llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) - - llama_vec = llama_vec.to(transformer.dtype) - llama_vec_n = llama_vec_n.to(transformer.dtype) - clip_l_pooler = clip_l_pooler.to(transformer.dtype) - clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) - return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] - - total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) - total_latent_sections = int(max(round(total_latent_sections), 1)) - - job_id = generate_timestamp() - - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) - - try: - # Clean GPU - if not high_vram: - unload_complete_models( - text_encoder, text_encoder_2, image_encoder, vae, transformer - ) - - # Text encoding - - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) - - if not high_vram: - fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode. - load_model_as_complete(text_encoder_2, target_device=gpu) - - prompt_parameters = [] - - for prompt_part in prompts: - prompt_parameters.append(encode_prompt(prompt_part, n_prompt)) - - # Processing input image - - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) - - H, W, C = input_image.shape - height, width = find_nearest_bucket(H, W, resolution=640) - input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) - - Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) - - input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 - input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] - - # VAE encoding - - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) - - if not high_vram: - load_model_as_complete(vae, target_device=gpu) - - start_latent = vae_encode(input_image_pt, vae) - - # CLIP Vision - - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) - - if not high_vram: - load_model_as_complete(image_encoder, target_device=gpu) - - image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) - image_encoder_last_hidden_state = image_encoder_output.last_hidden_state - - # Dtype - - image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) - - # Sampling - - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) - - rnd = torch.Generator("cpu").manual_seed(seed) - - history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu() - history_pixels = None - - history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2) - total_generated_latent_frames = 1 - - for section_index in range(total_latent_sections): - if stream.input_queue.top() == 'end': - stream.output_queue.push(('end', None)) - return - - print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}') - - if len(prompt_parameters) > 0: - [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(0) - - if not high_vram: - unload_complete_models() - move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) - - if use_teacache: - transformer.initialize_teacache(enable_teacache=True, num_steps=steps) - else: - transformer.initialize_teacache(enable_teacache=False) - - def callback(d): - preview = d['denoised'] - preview = vae_decode_fake(preview) - - preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) - preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') - - if stream.input_queue.top() == 'end': - stream.output_queue.push(('end', None)) - raise KeyboardInterrupt('User ends the task.') - - current_step = d['i'] + 1 - percentage = int(100.0 * current_step / steps) - hint = f'Sampling {current_step}/{steps}' - desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' - stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) - return - - indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0) - clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1) - clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1) - - clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2) - clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2) - - generated_latents = sample_hunyuan( - transformer=transformer, - sampler='unipc', - width=width, - height=height, - frames=latent_window_size * 4 - 3, - real_guidance_scale=cfg, - distilled_guidance_scale=gs, - guidance_rescale=rs, - # shift=3.0, - num_inference_steps=steps, - generator=rnd, - prompt_embeds=llama_vec, - prompt_embeds_mask=llama_attention_mask, - prompt_poolers=clip_l_pooler, - negative_prompt_embeds=llama_vec_n, - negative_prompt_embeds_mask=llama_attention_mask_n, - negative_prompt_poolers=clip_l_pooler_n, - device=gpu, - dtype=torch.bfloat16, - image_embeddings=image_encoder_last_hidden_state, - latent_indices=latent_indices, - clean_latents=clean_latents, - clean_latent_indices=clean_latent_indices, - clean_latents_2x=clean_latents_2x, - clean_latent_2x_indices=clean_latent_2x_indices, - clean_latents_4x=clean_latents_4x, - clean_latent_4x_indices=clean_latent_4x_indices, - callback=callback, - ) - - total_generated_latent_frames += int(generated_latents.shape[2]) - history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2) - - if not high_vram: - offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) - load_model_as_complete(vae, target_device=gpu) - - real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :] - - if history_pixels is None: - history_pixels = vae_decode(real_history_latents, vae).cpu() - else: - section_latent_frames = latent_window_size * 2 - overlapped_frames = latent_window_size * 4 - 3 - - current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu() - history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames) - - if not high_vram: - unload_complete_models() - - output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') - - save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf) - - print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') - - stream.output_queue.push(('file', output_filename)) - except: - traceback.print_exc() - - if not high_vram: - unload_complete_models( - text_encoder, text_encoder_2, image_encoder, vae, transformer - ) - - stream.output_queue.push(('end', None)) - return - -def get_duration(input_image, prompt, t2v, n_prompt, randomize_seed, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf): - global total_second_length_debug_value - - if total_second_length_debug_value is not None: - return min(total_second_length_debug_value * 60, 600) - return total_second_length * 60 - - -@spaces.GPU(duration=get_duration) -def process(input_image, prompt, - t2v=False, - n_prompt="", - randomize_seed=True, - seed=31337, - total_second_length=5, - latent_window_size=9, - steps=25, - cfg=1.0, - gs=10.0, - rs=0.0, - gpu_memory_preservation=6, - use_teacache=True, - mp4_crf=16 - ): - global stream, input_image_debug_value, prompt_debug_value, total_second_length_debug_value - - if torch.cuda.device_count() == 0: - gr.Warning('Set this space to GPU config to make it work.') - return None, None, None, None, None, None - - if input_image_debug_value is not None or prompt_debug_value is not None or total_second_length_debug_value is not None: - print("Debug mode") - input_image = input_image_debug_value - prompt = prompt_debug_value - total_second_length = total_second_length_debug_value - input_image_debug_value = prompt_debug_value = total_second_length_debug_value = None - - if randomize_seed: - seed = random.randint(0, np.iinfo(np.int32).max) - - prompts = prompt.split(";") - - # assert input_image is not None, 'No input image!' - if t2v: - default_height, default_width = 640, 640 - input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255 - print("No input image provided. Using a blank white image.") - - yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) - - stream = AsyncStream() - - async_run(worker, input_image, prompts, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf) - - output_filename = None - - while True: - flag, data = stream.output_queue.next() - - if flag == 'file': - output_filename = data - yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) - - if flag == 'progress': - preview, desc, html = data - yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) - - if flag == 'end': - yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) - break - -# 20250506 pftq: Modified worker to accept video input and clean frame count -@spaces.GPU() -@torch.no_grad() -def worker_video(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch): - - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) - - try: - # Clean GPU - if not high_vram: - unload_complete_models( - text_encoder, text_encoder_2, image_encoder, vae, transformer - ) - - # Text encoding - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) - - if not high_vram: - fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode. - load_model_as_complete(text_encoder_2, target_device=gpu) - - llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) - - if cfg == 1: - llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) - else: - llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) - - llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) - llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) - - # 20250506 pftq: Processing input video instead of image - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...')))) - - # 20250506 pftq: Encode video - #H, W = 640, 640 # Default resolution, will be adjusted - #height, width = find_nearest_bucket(H, W, resolution=640) - #start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu) - start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu) - - #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) - - # CLIP Vision - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) - - if not high_vram: - load_model_as_complete(image_encoder, target_device=gpu) - - image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) - image_encoder_last_hidden_state = image_encoder_output.last_hidden_state - - # Dtype - llama_vec = llama_vec.to(transformer.dtype) - llama_vec_n = llama_vec_n.to(transformer.dtype) - clip_l_pooler = clip_l_pooler.to(transformer.dtype) - clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) - image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) - - total_latent_sections = (total_second_length * fps) / (latent_window_size * 4) - total_latent_sections = int(max(round(total_latent_sections), 1)) - - for idx in range(batch): - if batch > 1: - print(f"Beginning video {idx+1} of {batch} with seed {seed} ") - - #job_id = generate_timestamp() - job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}" # 20250506 pftq: easier to read timestamp and filename - - # Sampling - stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) - - rnd = torch.Generator("cpu").manual_seed(seed) - - # 20250506 pftq: Initialize history_latents with video latents - history_latents = video_latents.cpu() - total_generated_latent_frames = history_latents.shape[2] - # 20250506 pftq: Initialize history_pixels to fix UnboundLocalError - history_pixels = None - previous_video = None - - # 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences - #history_pixels = input_video_pixels - #save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low - - for section_index in range(total_latent_sections): - if stream.input_queue.top() == 'end': - stream.output_queue.push(('end', None)) - return - - print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}') - - if not high_vram: - unload_complete_models() - move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) - - if use_teacache: - transformer.initialize_teacache(enable_teacache=True, num_steps=steps) - else: - transformer.initialize_teacache(enable_teacache=False) - - def callback(d): - preview = d['denoised'] - preview = vae_decode_fake(preview) - - preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) - preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') - - if stream.input_queue.top() == 'end': - stream.output_queue.push(('end', None)) - raise KeyboardInterrupt('User ends the task.') - - current_step = d['i'] + 1 - percentage = int(100.0 * current_step / steps) - hint = f'Sampling {current_step}/{steps}' - desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. The video is generating part {section_index+1} of {total_latent_sections}...' - stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) - return - - # 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2 - available_frames = history_latents.shape[2] # Number of latent frames - max_pixel_frames = min(latent_window_size * 4 - 3, available_frames * 4) # Cap at available pixel frames - adjusted_latent_frames = max(1, (max_pixel_frames + 3) // 4) # Convert back to latent frames - # Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x - effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 0 - effective_clean_frames = min(effective_clean_frames, available_frames - 2) if available_frames > 2 else 0 # 20250507 pftq: changed 1 to 2 for edge case for <=1 sec videos - num_2x_frames = min(2, max(1, available_frames - effective_clean_frames - 1)) if available_frames > effective_clean_frames + 1 else 0 # 20250507 pftq: subtracted 1 for edge case for <=1 sec videos - num_4x_frames = min(16, max(1, available_frames - effective_clean_frames - num_2x_frames)) if available_frames > effective_clean_frames + num_2x_frames else 0 # 20250507 pftq: Edge case for <=1 sec - - total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames - total_context_frames = min(total_context_frames, available_frames) # 20250507 pftq: Edge case for <=1 sec videos - - indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames])).unsqueeze(0) # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos - clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split( - [1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames], dim=1 # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos - ) - clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1) - - # 20250506 pftq: Split history_latents dynamically based on available frames - fallback_frame_count = 2 # 20250507 pftq: Changed 0 to 2 Edge case for <=1 sec videos - context_frames = history_latents[:, :, -total_context_frames:, :, :] if total_context_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :] - if total_context_frames > 0: - split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames] - split_sizes = [s for s in split_sizes if s > 0] # Remove zero sizes - if split_sizes: - splits = context_frames.split(split_sizes, dim=2) - split_idx = 0 - clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :] - if clean_latents_4x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos - clean_latents_4x = torch.cat([clean_latents_4x, clean_latents_4x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :] - split_idx += 1 if num_4x_frames > 0 else 0 - clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :] - if clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos - clean_latents_2x = torch.cat([clean_latents_2x, clean_latents_2x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :] - split_idx += 1 if num_2x_frames > 0 else 0 - clean_latents_1x = splits[split_idx] if effective_clean_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :] - else: - clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :] - else: - clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :] - - clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2) - - # 20250507 pftq: Fix for <=1 sec videos. - max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4) - - generated_latents = sample_hunyuan( - transformer=transformer, - sampler='unipc', - width=width, - height=height, - frames=max_frames, - real_guidance_scale=cfg, - distilled_guidance_scale=gs, - guidance_rescale=rs, - num_inference_steps=steps, - generator=rnd, - prompt_embeds=llama_vec, - prompt_embeds_mask=llama_attention_mask, - prompt_poolers=clip_l_pooler, - negative_prompt_embeds=llama_vec_n, - negative_prompt_embeds_mask=llama_attention_mask_n, - negative_prompt_poolers=clip_l_pooler_n, - device=gpu, - dtype=torch.bfloat16, - image_embeddings=image_encoder_last_hidden_state, - latent_indices=latent_indices, - clean_latents=clean_latents, - clean_latent_indices=clean_latent_indices, - clean_latents_2x=clean_latents_2x, - clean_latent_2x_indices=clean_latent_2x_indices, - clean_latents_4x=clean_latents_4x, - clean_latent_4x_indices=clean_latent_4x_indices, - callback=callback, - ) - - total_generated_latent_frames += int(generated_latents.shape[2]) - history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2) - - if not high_vram: - offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) - load_model_as_complete(vae, target_device=gpu) - - real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :] - - if history_pixels is None: - history_pixels = vae_decode(real_history_latents, vae).cpu() - else: - section_latent_frames = latent_window_size * 2 - overlapped_frames = min(latent_window_size * 4 - 3, history_pixels.shape[2]) - - #if section_index == 0: - #extra_latents = 1 # Add up to 2 extra latent frames for smoother overlap to initial video - #extra_pixel_frames = extra_latents * 4 # Approx. 4 pixel frames per latent - #overlapped_frames = min(overlapped_frames + extra_pixel_frames, history_pixels.shape[2], section_latent_frames * 4) - - current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu() - history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames) - - if not high_vram: - unload_complete_models() - - output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') - - # 20250506 pftq: Use input video FPS for output - save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf) - print(f"Latest video saved: {output_filename}") - # 20250508 pftq: Save prompt to mp4 metadata comments - set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}"); - print(f"Prompt saved to mp4 metadata comments: {output_filename}") - - # 20250506 pftq: Clean up previous partial files - if previous_video is not None and os.path.exists(previous_video): - try: - os.remove(previous_video) - print(f"Previous partial video deleted: {previous_video}") - except Exception as e: - print(f"Error deleting previous partial video {previous_video}: {e}") - previous_video = output_filename - - print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') - - stream.output_queue.push(('file', output_filename)) - - seed = (seed + 1) % np.iinfo(np.int32).max - - except: - traceback.print_exc() - - if not high_vram: - unload_complete_models( - text_encoder, text_encoder_2, image_encoder, vae, transformer - ) - - stream.output_queue.push(('end', None)) - return - -def get_duration_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch): - global total_second_length_debug_value - if total_second_length_debug_value is not None: - return min(total_second_length_debug_value * 60 * 10, 600) - return total_second_length * 60 * 10 - -# 20250506 pftq: Modified process to pass clean frame count, etc from video_encode -@spaces.GPU(duration=get_duration_video) -def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch): - global stream, high_vram, input_video_debug_value, prompt_debug_value, total_second_length_debug_value - - if torch.cuda.device_count() == 0: - gr.Warning('Set this space to GPU config to make it work.') - return None, None, None, None, None, None - - if input_video_debug_value is not None: - input_video = input_video_debug_value - input_video_debug_value = None - - if prompt_debug_value is not None: - prompt = prompt_debug_value - prompt_debug_value = None - - if total_second_length_debug_value is not None: - total_second_length = total_second_length_debug_value - total_second_length_debug_value = None - - if randomize_seed: - seed = random.randint(0, np.iinfo(np.int32).max) - - # 20250506 pftq: Updated assertion for video input - assert input_video is not None, 'No input video!' - - yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) - - # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher - if high_vram and (no_resize or resolution>640): - print("Disabling high vram mode due to no resize and/or potentially higher resolution...") - high_vram = False - vae.enable_slicing() - vae.enable_tiling() - DynamicSwapInstaller.install_model(transformer, device=gpu) - DynamicSwapInstaller.install_model(text_encoder, device=gpu) - - # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used - if cfg > 1: - gs = 1 - - stream = AsyncStream() - - # 20250506 pftq: Pass num_clean_frames, vae_batch, etc - async_run(worker_video, input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch) - - output_filename = None - - while True: - flag, data = stream.output_queue.next() - - if flag == 'file': - output_filename = data - yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) - - if flag == 'progress': - preview, desc, html = data - #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) - yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background - - if flag == 'end': - yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False) - break - -def end_process(): - stream.input_queue.push('end') - - -css = make_progress_bar_css() -block = gr.Blocks(css=css).queue() -with block: - if torch.cuda.device_count() == 0: - with gr.Row(): - gr.HTML(""" -

⚠️To use FramePack, duplicate this space and set a GPU with 30 GB VRAM. - - You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide feedback if you have issues. -

- """) - # 20250506 pftq: Updated title to reflect video input functionality - gr.Markdown('# Framepack F1 with Image Input or with Video Input (Video Extension)') - gr.Markdown(f"""### Video diffusion, but feels like image diffusion -*FramePack F1 - a FramePack model that only predicts future frames from history frames* -### *beta* FramePack Fill πŸ–‹οΈ- draw a mask over the input image to inpaint the video output -adapted from the officical code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) πŸ™ŒπŸ» - """) - with gr.Row(): - with gr.Column(): - input_video = gr.Video(sources='upload', label="Input Video", height=320) - prompt = gr.Textbox(label="Prompt", value='') - - with gr.Row(): - start_button = gr.Button(value="Start Generation", variant="primary") - end_button = gr.Button(value="End Generation", variant="stop", interactive=False) - - with gr.Accordion("Advanced settings", open=False): - with gr.Row(): - use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.') - no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).') - - randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different') - seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True) - - batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.') - - resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False) - - total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1) - - # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video - gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.') - cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time.') # Should not change - rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change - - n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).') - steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Increase for more quality, especially if using high non-distilled CFG.') - - # 20250506 pftq: Renamed slider to Number of Context Frames and updated description - num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 if memory issues.") - - default_vae = 32 - if high_vram: - default_vae = 128 - elif free_mem_gb>=20: - default_vae = 64 - - vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion.") - - latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=33, value=9, step=1, visible=True, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost.') - - gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.") - - mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ") - - with gr.Accordion("Debug", open=False): - input_video_debug = gr.Video(sources='upload', label="Input Video Debug", height=320) - prompt_debug = gr.Textbox(label="Prompt Debug", value='') - total_second_length_debug = gr.Slider(label="Additional Video Length to Generate (Seconds) Debug", minimum=1, maximum=120, value=1, step=0.1) - - with gr.Column(): - preview_image = gr.Image(label="Next Latents", height=200, visible=False) - result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True) - progress_desc = gr.Markdown('', elem_classes='no-generating-animation') - progress_bar = gr.HTML('', elem_classes='no-generating-animation') - - with gr.Row(visible=False): - gr.Examples( - examples = [ - [ - "./img_examples/Example1.mp4", # input_video - "View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed", - "", # n_prompt - True, # randomize_seed - 42, # seed - 1, # batch - 640, # resolution - 1, # total_second_length - 9, # latent_window_size - 25, # steps - 1.0, # cfg - 10.0, # gs - 0.0, # rs - 6, # gpu_memory_preservation - False, # use_teacache - False, # no_resize - 16, # mp4_crf - 5, # num_clean_frames - default_vae - ], - ], - run_on_click = True, - fn = process_video, - inputs = [input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch], - outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button], - cache_examples = True, - ) - - gr.Markdown('## Guide') - gr.Markdown("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.") - - - # 20250506 pftq: Updated inputs to include num_clean_frames - ips = [input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch] - start_button.click(fn=process_video, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) - end_button.click(fn=end_process) - - - def handle_field_debug_change(input_video_debug_data, prompt_debug_data, total_second_length_debug_data): - global input_video_debug_value, prompt_debug_value, total_second_length_debug_value - input_video_debug_value = input_video_debug_data - prompt_debug_value = prompt_debug_data - total_second_length_debug_value = total_second_length_debug_data - return [] - - input_video_debug.upload( - fn=handle_field_debug_change, - inputs=[input_video_debug, prompt_debug, total_second_length_debug], - outputs=[] - ) - - prompt_debug.change( - fn=handle_field_debug_change, - inputs=[input_video_debug, prompt_debug, total_second_length_debug], - outputs=[] - ) - - total_second_length_debug.change( - fn=handle_field_debug_change, - inputs=[input_video_debug, prompt_debug, total_second_length_debug], - outputs=[] - ) - +from diffusers_helper.hf_login import login + +import os + +os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) + +import spaces +import gradio as gr +import torch +import traceback +import einops +import safetensors.torch as sf +import numpy as np +import argparse +import random +import math +# 20250506 pftq: Added for video input loading +import decord +# 20250506 pftq: Added for progress bars in video_encode +from tqdm import tqdm +# 20250506 pftq: Normalize file paths for Windows compatibility +import pathlib +# 20250506 pftq: for easier to read timestamp +from datetime import datetime +# 20250508 pftq: for saving prompt to mp4 comments metadata +import imageio_ffmpeg +import tempfile +import shutil +import subprocess + +from PIL import Image +from diffusers import AutoencoderKLHunyuanVideo +from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer +from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake +from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp +from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked +from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan +from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete +from diffusers_helper.thread_utils import AsyncStream, async_run +from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html +from transformers import SiglipImageProcessor, SiglipVisionModel +from diffusers_helper.clip_vision import hf_clip_vision_encode +from diffusers_helper.bucket_tools import find_nearest_bucket +from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline + +if torch.cuda.device_count() > 0: + free_mem_gb = get_cuda_free_memory_gb(gpu) + high_vram = free_mem_gb > 60 + + print(f'Free VRAM {free_mem_gb} GB') + print(f'High-VRAM Mode: {high_vram}') + + + + text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu() + text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu() + tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') + tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') + vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu() + + feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') + image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu() + + transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu() + + vae.eval() + text_encoder.eval() + text_encoder_2.eval() + image_encoder.eval() + transformer.eval() + + if not high_vram: + vae.enable_slicing() + vae.enable_tiling() + + transformer.high_quality_fp32_output_for_inference = True + print('transformer.high_quality_fp32_output_for_inference = True') + + transformer.to(dtype=torch.bfloat16) + vae.to(dtype=torch.float16) + image_encoder.to(dtype=torch.float16) + text_encoder.to(dtype=torch.float16) + text_encoder_2.to(dtype=torch.float16) + + vae.requires_grad_(False) + text_encoder.requires_grad_(False) + text_encoder_2.requires_grad_(False) + image_encoder.requires_grad_(False) + transformer.requires_grad_(False) + + if not high_vram: + # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster + DynamicSwapInstaller.install_model(transformer, device=gpu) + DynamicSwapInstaller.install_model(text_encoder, device=gpu) + else: + text_encoder.to(gpu) + text_encoder_2.to(gpu) + image_encoder.to(gpu) + vae.to(gpu) + transformer.to(gpu) + +stream = AsyncStream() + +outputs_folder = './outputs/' +os.makedirs(outputs_folder, exist_ok=True) + +input_image_debug_value = prompt_debug_value = total_second_length_debug_value = None + +@spaces.GPU() +@torch.no_grad() +def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None): + """ + Encode a video into latent representations using the VAE. + + Args: + video_path: Path to the input video file. + vae: AutoencoderKLHunyuanVideo model. + height, width: Target resolution for resizing frames. + vae_batch_size: Number of frames to process per batch. + device: Device for computation (e.g., "cuda"). + + Returns: + start_latent: Latent of the first frame (for compatibility with original code). + input_image_np: First frame as numpy array (for CLIP vision encoding). + history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]). + fps: Frames per second of the input video. + """ + # 20250506 pftq: Normalize video path for Windows compatibility + video_path = str(pathlib.Path(video_path).resolve()) + print(f"Processing video: {video_path}") + + # 20250506 pftq: Check CUDA availability and fallback to CPU if needed + if device == "cuda" and not torch.cuda.is_available(): + print("CUDA is not available, falling back to CPU") + device = "cpu" + + try: + # 20250506 pftq: Load video and get FPS + print("Initializing VideoReader...") + vr = decord.VideoReader(video_path) + fps = vr.get_avg_fps() # Get input video FPS + num_real_frames = len(vr) + print(f"Video loaded: {num_real_frames} frames, FPS: {fps}") + + # Truncate to nearest latent size (multiple of 4) + latent_size_factor = 4 + num_frames = (num_real_frames // latent_size_factor) * latent_size_factor + if num_frames != num_real_frames: + print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility") + num_real_frames = num_frames + + # 20250506 pftq: Read frames + print("Reading video frames...") + frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels) + print(f"Frames read: {frames.shape}") + + # 20250506 pftq: Get native video resolution + native_height, native_width = frames.shape[1], frames.shape[2] + print(f"Native video resolution: {native_width}x{native_height}") + + # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values + target_height = native_height if height is None else height + target_width = native_width if width is None else width + + # 20250506 pftq: Adjust to nearest bucket for model compatibility + if not no_resize: + target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution) + print(f"Adjusted resolution: {target_width}x{target_height}") + else: + print(f"Using native resolution without resizing: {target_width}x{target_height}") + + # 20250506 pftq: Preprocess frames to match original image processing + processed_frames = [] + for i, frame in enumerate(frames): + #print(f"Preprocessing frame {i+1}/{num_frames}") + frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height) + processed_frames.append(frame_np) + processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels) + print(f"Frames preprocessed: {processed_frames.shape}") + + # 20250506 pftq: Save first frame for CLIP vision encoding + input_image_np = processed_frames[0] + + # 20250506 pftq: Convert to tensor and normalize to [-1, 1] + print("Converting frames to tensor...") + frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1 + frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width) + frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width) + frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width) + print(f"Tensor shape: {frames_pt.shape}") + + # 20250507 pftq: Save pixel frames for use in worker + input_video_pixels = frames_pt.cpu() + + # 20250506 pftq: Move to device + print(f"Moving tensor to device: {device}") + frames_pt = frames_pt.to(device) + print("Tensor moved to device") + + # 20250506 pftq: Move VAE to device + print(f"Moving VAE to device: {device}") + vae.to(device) + print("VAE moved to device") + + # 20250506 pftq: Encode frames in batches + print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)") + latents = [] + vae.eval() + with torch.no_grad(): + for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1): + #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}") + batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width) + try: + # 20250506 pftq: Log GPU memory before encoding + if device == "cuda": + free_mem = torch.cuda.memory_allocated() / 1024**3 + #print(f"GPU memory before encoding: {free_mem:.2f} GB") + batch_latent = vae_encode(batch, vae) + # 20250506 pftq: Synchronize CUDA to catch issues + if device == "cuda": + torch.cuda.synchronize() + #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB") + latents.append(batch_latent) + #print(f"Batch encoded, latent shape: {batch_latent.shape}") + except RuntimeError as e: + print(f"Error during VAE encoding: {str(e)}") + if device == "cuda" and "out of memory" in str(e).lower(): + print("CUDA out of memory, try reducing vae_batch_size or using CPU") + raise + + # 20250506 pftq: Concatenate latents + print("Concatenating latents...") + history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8) + print(f"History latents shape: {history_latents.shape}") + + # 20250506 pftq: Get first frame's latent + start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8) + print(f"Start latent shape: {start_latent.shape}") + + # 20250506 pftq: Move VAE back to CPU to free GPU memory + if device == "cuda": + vae.to(cpu) + torch.cuda.empty_cache() + print("VAE moved back to CPU, CUDA cache cleared") + + return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels + + except Exception as e: + print(f"Error in video_encode: {str(e)}") + raise + +# 20250508 pftq: for saving prompt to mp4 metadata comments +def set_mp4_comments_imageio_ffmpeg(input_file, comments): + try: + # Get the path to the bundled FFmpeg binary from imageio-ffmpeg + ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe() + + # Check if input file exists + if not os.path.exists(input_file): + print(f"Error: Input file {input_file} does not exist") + return False + + # Create a temporary file path + temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name + + # FFmpeg command using the bundled binary + command = [ + ffmpeg_path, # Use imageio-ffmpeg's FFmpeg + '-i', input_file, # input file + '-metadata', f'comment={comments}', # set comment metadata + '-c:v', 'copy', # copy video stream without re-encoding + '-c:a', 'copy', # copy audio stream without re-encoding + '-y', # overwrite output file if it exists + temp_file # temporary output file + ] + + # Run the FFmpeg command + result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) + + if result.returncode == 0: + # Replace the original file with the modified one + shutil.move(temp_file, input_file) + print(f"Successfully added comments to {input_file}") + return True + else: + # Clean up temp file if FFmpeg fails + if os.path.exists(temp_file): + os.remove(temp_file) + print(f"Error: FFmpeg failed with message:\n{result.stderr}") + return False + + except Exception as e: + # Clean up temp file in case of other errors + if 'temp_file' in locals() and os.path.exists(temp_file): + os.remove(temp_file) + print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e)) + return False + +@torch.no_grad() +def worker(input_image, prompts, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf): + def encode_prompt(prompt, n_prompt): + llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) + + if cfg == 1: + llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) + else: + llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) + + llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) + llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) + + llama_vec = llama_vec.to(transformer.dtype) + llama_vec_n = llama_vec_n.to(transformer.dtype) + clip_l_pooler = clip_l_pooler.to(transformer.dtype) + clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) + return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] + + total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) + total_latent_sections = int(max(round(total_latent_sections), 1)) + + job_id = generate_timestamp() + + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) + + try: + # Clean GPU + if not high_vram: + unload_complete_models( + text_encoder, text_encoder_2, image_encoder, vae, transformer + ) + + # Text encoding + + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) + + if not high_vram: + fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode. + load_model_as_complete(text_encoder_2, target_device=gpu) + + prompt_parameters = [] + + for prompt_part in prompts: + prompt_parameters.append(encode_prompt(prompt_part, n_prompt)) + + # Processing input image + + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) + + H, W, C = input_image.shape + height, width = find_nearest_bucket(H, W, resolution=640) + input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) + + Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) + + input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 + input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] + + # VAE encoding + + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) + + if not high_vram: + load_model_as_complete(vae, target_device=gpu) + + start_latent = vae_encode(input_image_pt, vae) + + # CLIP Vision + + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) + + if not high_vram: + load_model_as_complete(image_encoder, target_device=gpu) + + image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) + image_encoder_last_hidden_state = image_encoder_output.last_hidden_state + + # Dtype + + image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) + + # Sampling + + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) + + rnd = torch.Generator("cpu").manual_seed(seed) + + history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu() + history_pixels = None + + history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2) + total_generated_latent_frames = 1 + + for section_index in range(total_latent_sections): + if stream.input_queue.top() == 'end': + stream.output_queue.push(('end', None)) + return + + print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}') + + if len(prompt_parameters) > 0: + [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(0) + + if not high_vram: + unload_complete_models() + move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) + + if use_teacache: + transformer.initialize_teacache(enable_teacache=True, num_steps=steps) + else: + transformer.initialize_teacache(enable_teacache=False) + + def callback(d): + preview = d['denoised'] + preview = vae_decode_fake(preview) + + preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) + preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') + + if stream.input_queue.top() == 'end': + stream.output_queue.push(('end', None)) + raise KeyboardInterrupt('User ends the task.') + + current_step = d['i'] + 1 + percentage = int(100.0 * current_step / steps) + hint = f'Sampling {current_step}/{steps}' + desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' + stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) + return + + indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0) + clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1) + clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1) + + clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2) + clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2) + + generated_latents = sample_hunyuan( + transformer=transformer, + sampler='unipc', + width=width, + height=height, + frames=latent_window_size * 4 - 3, + real_guidance_scale=cfg, + distilled_guidance_scale=gs, + guidance_rescale=rs, + # shift=3.0, + num_inference_steps=steps, + generator=rnd, + prompt_embeds=llama_vec, + prompt_embeds_mask=llama_attention_mask, + prompt_poolers=clip_l_pooler, + negative_prompt_embeds=llama_vec_n, + negative_prompt_embeds_mask=llama_attention_mask_n, + negative_prompt_poolers=clip_l_pooler_n, + device=gpu, + dtype=torch.bfloat16, + image_embeddings=image_encoder_last_hidden_state, + latent_indices=latent_indices, + clean_latents=clean_latents, + clean_latent_indices=clean_latent_indices, + clean_latents_2x=clean_latents_2x, + clean_latent_2x_indices=clean_latent_2x_indices, + clean_latents_4x=clean_latents_4x, + clean_latent_4x_indices=clean_latent_4x_indices, + callback=callback, + ) + + total_generated_latent_frames += int(generated_latents.shape[2]) + history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2) + + if not high_vram: + offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) + load_model_as_complete(vae, target_device=gpu) + + real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :] + + if history_pixels is None: + history_pixels = vae_decode(real_history_latents, vae).cpu() + else: + section_latent_frames = latent_window_size * 2 + overlapped_frames = latent_window_size * 4 - 3 + + current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu() + history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames) + + if not high_vram: + unload_complete_models() + + output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') + + save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf) + + print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') + + stream.output_queue.push(('file', output_filename)) + except: + traceback.print_exc() + + if not high_vram: + unload_complete_models( + text_encoder, text_encoder_2, image_encoder, vae, transformer + ) + + stream.output_queue.push(('end', None)) + return + +def get_duration(input_image, prompt, t2v, n_prompt, randomize_seed, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf): + global total_second_length_debug_value + + if total_second_length_debug_value is not None: + return min(total_second_length_debug_value * 60, 600) + return total_second_length * 60 + + +@spaces.GPU(duration=get_duration) +def process(input_image, prompt, + t2v=False, + n_prompt="", + randomize_seed=True, + seed=31337, + total_second_length=5, + latent_window_size=9, + steps=25, + cfg=1.0, + gs=10.0, + rs=0.0, + gpu_memory_preservation=6, + use_teacache=True, + mp4_crf=16 + ): + global stream, input_image_debug_value, prompt_debug_value, total_second_length_debug_value + + if torch.cuda.device_count() == 0: + gr.Warning('Set this space to GPU config to make it work.') + return None, None, None, None, None, None + + if input_image_debug_value is not None or prompt_debug_value is not None or total_second_length_debug_value is not None: + print("Debug mode") + input_image = input_image_debug_value + prompt = prompt_debug_value + total_second_length = total_second_length_debug_value + input_image_debug_value = prompt_debug_value = total_second_length_debug_value = None + + if randomize_seed: + seed = random.randint(0, np.iinfo(np.int32).max) + + prompts = prompt.split(";") + + # assert input_image is not None, 'No input image!' + if t2v: + default_height, default_width = 640, 640 + input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255 + print("No input image provided. Using a blank white image.") + + yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) + + stream = AsyncStream() + + async_run(worker, input_image, prompts, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf) + + output_filename = None + + while True: + flag, data = stream.output_queue.next() + + if flag == 'file': + output_filename = data + yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) + + if flag == 'progress': + preview, desc, html = data + yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) + + if flag == 'end': + yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) + break + +# 20250506 pftq: Modified worker to accept video input and clean frame count +@spaces.GPU() +@torch.no_grad() +def worker_video(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch): + + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) + + try: + # Clean GPU + if not high_vram: + unload_complete_models( + text_encoder, text_encoder_2, image_encoder, vae, transformer + ) + + # Text encoding + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) + + if not high_vram: + fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode. + load_model_as_complete(text_encoder_2, target_device=gpu) + + llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) + + if cfg == 1: + llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) + else: + llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) + + llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) + llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) + + # 20250506 pftq: Processing input video instead of image + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...')))) + + # 20250506 pftq: Encode video + #H, W = 640, 640 # Default resolution, will be adjusted + #height, width = find_nearest_bucket(H, W, resolution=640) + #start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu) + start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu) + + #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) + + # CLIP Vision + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) + + if not high_vram: + load_model_as_complete(image_encoder, target_device=gpu) + + image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) + image_encoder_last_hidden_state = image_encoder_output.last_hidden_state + + # Dtype + llama_vec = llama_vec.to(transformer.dtype) + llama_vec_n = llama_vec_n.to(transformer.dtype) + clip_l_pooler = clip_l_pooler.to(transformer.dtype) + clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) + image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) + + total_latent_sections = (total_second_length * fps) / (latent_window_size * 4) + total_latent_sections = int(max(round(total_latent_sections), 1)) + + for idx in range(batch): + if batch > 1: + print(f"Beginning video {idx+1} of {batch} with seed {seed} ") + + #job_id = generate_timestamp() + job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}" # 20250506 pftq: easier to read timestamp and filename + + # Sampling + stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) + + rnd = torch.Generator("cpu").manual_seed(seed) + + # 20250506 pftq: Initialize history_latents with video latents + history_latents = video_latents.cpu() + total_generated_latent_frames = history_latents.shape[2] + # 20250506 pftq: Initialize history_pixels to fix UnboundLocalError + history_pixels = None + previous_video = None + + # 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences + #history_pixels = input_video_pixels + #save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low + + for section_index in range(total_latent_sections): + if stream.input_queue.top() == 'end': + stream.output_queue.push(('end', None)) + return + + print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}') + + if not high_vram: + unload_complete_models() + move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) + + if use_teacache: + transformer.initialize_teacache(enable_teacache=True, num_steps=steps) + else: + transformer.initialize_teacache(enable_teacache=False) + + def callback(d): + preview = d['denoised'] + preview = vae_decode_fake(preview) + + preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) + preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') + + if stream.input_queue.top() == 'end': + stream.output_queue.push(('end', None)) + raise KeyboardInterrupt('User ends the task.') + + current_step = d['i'] + 1 + percentage = int(100.0 * current_step / steps) + hint = f'Sampling {current_step}/{steps}' + desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. The video is generating part {section_index+1} of {total_latent_sections}...' + stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) + return + + # 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2 + available_frames = history_latents.shape[2] # Number of latent frames + max_pixel_frames = min(latent_window_size * 4 - 3, available_frames * 4) # Cap at available pixel frames + adjusted_latent_frames = max(1, (max_pixel_frames + 3) // 4) # Convert back to latent frames + # Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x + effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 0 + effective_clean_frames = min(effective_clean_frames, available_frames - 2) if available_frames > 2 else 0 # 20250507 pftq: changed 1 to 2 for edge case for <=1 sec videos + num_2x_frames = min(2, max(1, available_frames - effective_clean_frames - 1)) if available_frames > effective_clean_frames + 1 else 0 # 20250507 pftq: subtracted 1 for edge case for <=1 sec videos + num_4x_frames = min(16, max(1, available_frames - effective_clean_frames - num_2x_frames)) if available_frames > effective_clean_frames + num_2x_frames else 0 # 20250507 pftq: Edge case for <=1 sec + + total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames + total_context_frames = min(total_context_frames, available_frames) # 20250507 pftq: Edge case for <=1 sec videos + + indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames])).unsqueeze(0) # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos + clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split( + [1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames], dim=1 # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos + ) + clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1) + + # 20250506 pftq: Split history_latents dynamically based on available frames + fallback_frame_count = 2 # 20250507 pftq: Changed 0 to 2 Edge case for <=1 sec videos + context_frames = history_latents[:, :, -total_context_frames:, :, :] if total_context_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :] + if total_context_frames > 0: + split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames] + split_sizes = [s for s in split_sizes if s > 0] # Remove zero sizes + if split_sizes: + splits = context_frames.split(split_sizes, dim=2) + split_idx = 0 + clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :] + if clean_latents_4x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos + clean_latents_4x = torch.cat([clean_latents_4x, clean_latents_4x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :] + split_idx += 1 if num_4x_frames > 0 else 0 + clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :] + if clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos + clean_latents_2x = torch.cat([clean_latents_2x, clean_latents_2x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :] + split_idx += 1 if num_2x_frames > 0 else 0 + clean_latents_1x = splits[split_idx] if effective_clean_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :] + else: + clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :] + else: + clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :] + + clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2) + + # 20250507 pftq: Fix for <=1 sec videos. + max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4) + + generated_latents = sample_hunyuan( + transformer=transformer, + sampler='unipc', + width=width, + height=height, + frames=max_frames, + real_guidance_scale=cfg, + distilled_guidance_scale=gs, + guidance_rescale=rs, + num_inference_steps=steps, + generator=rnd, + prompt_embeds=llama_vec, + prompt_embeds_mask=llama_attention_mask, + prompt_poolers=clip_l_pooler, + negative_prompt_embeds=llama_vec_n, + negative_prompt_embeds_mask=llama_attention_mask_n, + negative_prompt_poolers=clip_l_pooler_n, + device=gpu, + dtype=torch.bfloat16, + image_embeddings=image_encoder_last_hidden_state, + latent_indices=latent_indices, + clean_latents=clean_latents, + clean_latent_indices=clean_latent_indices, + clean_latents_2x=clean_latents_2x, + clean_latent_2x_indices=clean_latent_2x_indices, + clean_latents_4x=clean_latents_4x, + clean_latent_4x_indices=clean_latent_4x_indices, + callback=callback, + ) + + total_generated_latent_frames += int(generated_latents.shape[2]) + history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2) + + if not high_vram: + offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) + load_model_as_complete(vae, target_device=gpu) + + real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :] + + if history_pixels is None: + history_pixels = vae_decode(real_history_latents, vae).cpu() + else: + section_latent_frames = latent_window_size * 2 + overlapped_frames = min(latent_window_size * 4 - 3, history_pixels.shape[2]) + + #if section_index == 0: + #extra_latents = 1 # Add up to 2 extra latent frames for smoother overlap to initial video + #extra_pixel_frames = extra_latents * 4 # Approx. 4 pixel frames per latent + #overlapped_frames = min(overlapped_frames + extra_pixel_frames, history_pixels.shape[2], section_latent_frames * 4) + + current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu() + history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames) + + if not high_vram: + unload_complete_models() + + output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') + + # 20250506 pftq: Use input video FPS for output + save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf) + print(f"Latest video saved: {output_filename}") + # 20250508 pftq: Save prompt to mp4 metadata comments + set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}"); + print(f"Prompt saved to mp4 metadata comments: {output_filename}") + + # 20250506 pftq: Clean up previous partial files + if previous_video is not None and os.path.exists(previous_video): + try: + os.remove(previous_video) + print(f"Previous partial video deleted: {previous_video}") + except Exception as e: + print(f"Error deleting previous partial video {previous_video}: {e}") + previous_video = output_filename + + print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') + + stream.output_queue.push(('file', output_filename)) + + seed = (seed + 1) % np.iinfo(np.int32).max + + except: + traceback.print_exc() + + if not high_vram: + unload_complete_models( + text_encoder, text_encoder_2, image_encoder, vae, transformer + ) + + stream.output_queue.push(('end', None)) + return + +def get_duration_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch): + global total_second_length_debug_value + if total_second_length_debug_value is not None: + return min(total_second_length_debug_value * 60 * 10, 600) + return total_second_length * 60 * 10 + +# 20250506 pftq: Modified process to pass clean frame count, etc from video_encode +@spaces.GPU(duration=get_duration_video) +def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch): + global stream, high_vram, input_video_debug_value, prompt_debug_value, total_second_length_debug_value + + if torch.cuda.device_count() == 0: + gr.Warning('Set this space to GPU config to make it work.') + return None, None, None, None, None, None + + if input_video_debug_value is not None: + input_video = input_video_debug_value + input_video_debug_value = None + + if prompt_debug_value is not None: + prompt = prompt_debug_value + prompt_debug_value = None + + if total_second_length_debug_value is not None: + total_second_length = total_second_length_debug_value + total_second_length_debug_value = None + + if randomize_seed: + seed = random.randint(0, np.iinfo(np.int32).max) + + # 20250506 pftq: Updated assertion for video input + assert input_video is not None, 'No input video!' + + yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) + + # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher + if high_vram and (no_resize or resolution>640): + print("Disabling high vram mode due to no resize and/or potentially higher resolution...") + high_vram = False + vae.enable_slicing() + vae.enable_tiling() + DynamicSwapInstaller.install_model(transformer, device=gpu) + DynamicSwapInstaller.install_model(text_encoder, device=gpu) + + # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used + if cfg > 1: + gs = 1 + + stream = AsyncStream() + + # 20250506 pftq: Pass num_clean_frames, vae_batch, etc + async_run(worker_video, input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch) + + output_filename = None + + while True: + flag, data = stream.output_queue.next() + + if flag == 'file': + output_filename = data + yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) + + if flag == 'progress': + preview, desc, html = data + #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) + yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background + + if flag == 'end': + yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False) + break + +def end_process(): + stream.input_queue.push('end') + + +css = make_progress_bar_css() +block = gr.Blocks(css=css).queue() +with block: + if torch.cuda.device_count() == 0: + with gr.Row(): + gr.HTML(""" +

⚠️To use FramePack, duplicate this space and set a GPU with 30 GB VRAM. + + You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide feedback if you have issues. +

+ """) + # 20250506 pftq: Updated title to reflect video input functionality + gr.Markdown('# Framepack F1 with Image Input or with Video Input (Video Extension)') + gr.Markdown(f"""### Video diffusion, but feels like image diffusion +*FramePack F1 - a FramePack model that only predicts future frames from history frames* +### *beta* FramePack Fill πŸ–‹οΈ- draw a mask over the input image to inpaint the video output +adapted from the officical code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) πŸ™ŒπŸ» + """) + with gr.Row(): + with gr.Column(): + input_video = gr.Video(sources='upload', label="Input Video", height=320) + prompt = gr.Textbox(label="Prompt", value='') + + with gr.Row(): + start_button = gr.Button(value="Start Generation", variant="primary") + end_button = gr.Button(value="End Generation", variant="stop", interactive=False) + + with gr.Accordion("Advanced settings", open=False): + with gr.Row(): + use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.') + no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).') + + randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different') + seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True) + + batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.') + + resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False) + + total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1) + + # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video + gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.') + cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time.') # Should not change + rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change + + n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).') + steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Increase for more quality, especially if using high non-distilled CFG.') + + # 20250506 pftq: Renamed slider to Number of Context Frames and updated description + num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 if memory issues.") + + default_vae = 32 + if high_vram: + default_vae = 128 + elif free_mem_gb>=20: + default_vae = 64 + + vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion.") + + latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=33, value=9, step=1, visible=True, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost.') + + gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.") + + mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ") + + with gr.Accordion("Debug", open=False): + input_video_debug = gr.Video(sources='upload', label="Input Video Debug", height=320) + prompt_debug = gr.Textbox(label="Prompt Debug", value='') + total_second_length_debug = gr.Slider(label="Additional Video Length to Generate (Seconds) Debug", minimum=1, maximum=120, value=1, step=0.1) + + with gr.Column(): + preview_image = gr.Image(label="Next Latents", height=200, visible=False) + result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True) + progress_desc = gr.Markdown('', elem_classes='no-generating-animation') + progress_bar = gr.HTML('', elem_classes='no-generating-animation') + + with gr.Row(visible=False): + gr.Examples( + examples = [ + [ + "./img_examples/Example1.mp4", # input_video + "View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed", + "", # n_prompt + True, # randomize_seed + 42, # seed + 1, # batch + 640, # resolution + 1, # total_second_length + 9, # latent_window_size + 25, # steps + 1.0, # cfg + 10.0, # gs + 0.0, # rs + 6, # gpu_memory_preservation + False, # use_teacache + False, # no_resize + 16, # mp4_crf + 5, # num_clean_frames + default_vae + ], + ], + run_on_click = True, + fn = process_video, + inputs = [input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch], + outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button], + cache_examples = True, + ) + + gr.Markdown('## Guide') + gr.Markdown("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.") + + + # 20250506 pftq: Updated inputs to include num_clean_frames + ips = [input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch] + start_button.click(fn=process_video, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) + end_button.click(fn=end_process) + + + def handle_field_debug_change(input_video_debug_data, prompt_debug_data, total_second_length_debug_data): + global input_video_debug_value, prompt_debug_value, total_second_length_debug_value + input_video_debug_value = input_video_debug_data + prompt_debug_value = prompt_debug_data + total_second_length_debug_value = total_second_length_debug_data + return [] + + input_video_debug.upload( + fn=handle_field_debug_change, + inputs=[input_video_debug, prompt_debug, total_second_length_debug], + outputs=[] + ) + + prompt_debug.change( + fn=handle_field_debug_change, + inputs=[input_video_debug, prompt_debug, total_second_length_debug], + outputs=[] + ) + + total_second_length_debug.change( + fn=handle_field_debug_change, + inputs=[input_video_debug, prompt_debug, total_second_length_debug], + outputs=[] + ) + block.launch(mcp_server=False, ssr_mode=False) \ No newline at end of file