Spaces:
Running
on
Zero
Running
on
Zero
Upload 5 files
Browse files- README.md +11 -18
- app.py +496 -984
- app_endframe.py +0 -0
- app_v2v.py +4 -0
- requirements.txt +22 -40
README.md
CHANGED
@@ -1,21 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
|
|
|
|
|
|
3 |
sdk: gradio
|
4 |
-
|
5 |
-
sdk_version: 4.38.1
|
6 |
app_file: app.py
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
- Image-to-Image
|
14 |
-
- Image-2-Image
|
15 |
-
- Img-to-Img
|
16 |
-
- Img-2-Img
|
17 |
-
- language models
|
18 |
-
- LLMs
|
19 |
-
short_description: Restore blurred or small images with prompt
|
20 |
-
suggested_hardware: zero-a10g
|
21 |
-
---
|
|
|
1 |
---
|
2 |
+
title: FramePack F1 + V2V + EF
|
3 |
+
emoji: 👽
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.29.1
|
|
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
+
short_description: fast video generation from images & text
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,1036 +1,548 @@
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
import argparse
|
4 |
-
import numpy as np
|
5 |
import torch
|
|
|
6 |
import einops
|
7 |
-
import
|
|
|
8 |
import math
|
9 |
-
import time
|
10 |
import random
|
11 |
import spaces
|
12 |
-
import re
|
13 |
-
import uuid
|
14 |
|
15 |
-
from gradio_imageslider import ImageSlider
|
16 |
from PIL import Image
|
17 |
-
from
|
18 |
-
from
|
19 |
-
from
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
"input",
|
99 |
-
179
|
100 |
-
]
|
101 |
-
|
102 |
-
def check_and_update(input_image):
|
103 |
-
if input_image is None:
|
104 |
-
raise gr.Error("Please provide an image to restore.")
|
105 |
-
return gr.update(visible = True)
|
106 |
-
|
107 |
-
@spaces.GPU(duration=420)
|
108 |
-
def stage1_process(
|
109 |
-
input_image,
|
110 |
-
gamma_correction,
|
111 |
-
diff_dtype,
|
112 |
-
ae_dtype
|
113 |
-
):
|
114 |
-
print('stage1_process ==>>')
|
115 |
-
if torch.cuda.device_count() == 0:
|
116 |
-
gr.Warning('Set this space to GPU config to make it work.')
|
117 |
-
return None, None
|
118 |
-
torch.cuda.set_device(SUPIR_device)
|
119 |
-
LQ = HWC3(np.array(Image.open(input_image)))
|
120 |
-
LQ = fix_resize(LQ, 512)
|
121 |
-
# stage1
|
122 |
-
LQ = np.array(LQ) / 255 * 2 - 1
|
123 |
-
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
124 |
-
|
125 |
-
model.ae_dtype = convert_dtype(ae_dtype)
|
126 |
-
model.model.dtype = convert_dtype(diff_dtype)
|
127 |
-
|
128 |
-
LQ = model.batchify_denoise(LQ, is_stage1=True)
|
129 |
-
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
|
130 |
-
# gamma correction
|
131 |
-
LQ = LQ / 255.0
|
132 |
-
LQ = np.power(LQ, gamma_correction)
|
133 |
-
LQ *= 255.0
|
134 |
-
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
135 |
-
print('<<== stage1_process')
|
136 |
-
return LQ, gr.update(visible = True)
|
137 |
-
|
138 |
-
def stage2_process_example(*args, **kwargs):
|
139 |
-
[result_slider, result_gallery, restore_information, reset_btn] = restore_in_Xmin(*args, **kwargs)
|
140 |
-
return [result_slider, restore_information, reset_btn]
|
141 |
-
|
142 |
-
def stage2_process(*args, **kwargs):
|
143 |
-
try:
|
144 |
-
return restore_in_Xmin(*args, **kwargs)
|
145 |
-
except Exception as e:
|
146 |
-
# NO_GPU_MESSAGE_INQUEUE
|
147 |
-
print("gradio.exceptions.Error 'No GPU is currently available for you after 60s'")
|
148 |
-
print('str(type(e)): ' + str(type(e))) # <class 'gradio.exceptions.Error'>
|
149 |
-
print('str(e): ' + str(e)) # You have exceeded your GPU quota...
|
150 |
-
try:
|
151 |
-
print('e.message: ' + e.message) # No GPU is currently available for you after 60s
|
152 |
-
except Exception as e2:
|
153 |
-
print('Failure')
|
154 |
-
if str(e).startswith("No GPU is currently available for you after 60s"):
|
155 |
-
print('Exception identified!!!')
|
156 |
-
#if str(type(e)) == "<class 'gradio.exceptions.Error'>":
|
157 |
-
#print('Exception of name ' + type(e).__name__)
|
158 |
-
raise e
|
159 |
-
|
160 |
-
def restore_in_Xmin(
|
161 |
-
noisy_image,
|
162 |
-
rotation,
|
163 |
-
denoise_image,
|
164 |
-
prompt,
|
165 |
-
a_prompt,
|
166 |
-
n_prompt,
|
167 |
-
num_samples,
|
168 |
-
min_size,
|
169 |
-
downscale,
|
170 |
-
upscale,
|
171 |
-
edm_steps,
|
172 |
-
s_stage1,
|
173 |
-
s_stage2,
|
174 |
-
s_cfg,
|
175 |
-
randomize_seed,
|
176 |
-
seed,
|
177 |
-
s_churn,
|
178 |
-
s_noise,
|
179 |
-
color_fix_type,
|
180 |
-
diff_dtype,
|
181 |
-
ae_dtype,
|
182 |
-
gamma_correction,
|
183 |
-
linear_CFG,
|
184 |
-
linear_s_stage2,
|
185 |
-
spt_linear_CFG,
|
186 |
-
spt_linear_s_stage2,
|
187 |
-
model_select,
|
188 |
-
output_format,
|
189 |
-
allocation
|
190 |
-
):
|
191 |
-
print("noisy_image:\n" + str(noisy_image))
|
192 |
-
print("denoise_image:\n" + str(denoise_image))
|
193 |
-
print("rotation: " + str(rotation))
|
194 |
-
print("prompt: " + str(prompt))
|
195 |
-
print("a_prompt: " + str(a_prompt))
|
196 |
-
print("n_prompt: " + str(n_prompt))
|
197 |
-
print("num_samples: " + str(num_samples))
|
198 |
-
print("min_size: " + str(min_size))
|
199 |
-
print("downscale: " + str(downscale))
|
200 |
-
print("upscale: " + str(upscale))
|
201 |
-
print("edm_steps: " + str(edm_steps))
|
202 |
-
print("s_stage1: " + str(s_stage1))
|
203 |
-
print("s_stage2: " + str(s_stage2))
|
204 |
-
print("s_cfg: " + str(s_cfg))
|
205 |
-
print("randomize_seed: " + str(randomize_seed))
|
206 |
-
print("seed: " + str(seed))
|
207 |
-
print("s_churn: " + str(s_churn))
|
208 |
-
print("s_noise: " + str(s_noise))
|
209 |
-
print("color_fix_type: " + str(color_fix_type))
|
210 |
-
print("diff_dtype: " + str(diff_dtype))
|
211 |
-
print("ae_dtype: " + str(ae_dtype))
|
212 |
-
print("gamma_correction: " + str(gamma_correction))
|
213 |
-
print("linear_CFG: " + str(linear_CFG))
|
214 |
-
print("linear_s_stage2: " + str(linear_s_stage2))
|
215 |
-
print("spt_linear_CFG: " + str(spt_linear_CFG))
|
216 |
-
print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
|
217 |
-
print("model_select: " + str(model_select))
|
218 |
-
print("GPU time allocation: " + str(allocation) + " min")
|
219 |
-
print("output_format: " + str(output_format))
|
220 |
-
|
221 |
-
input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)
|
222 |
-
|
223 |
-
if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
|
224 |
-
gr.Warning('Invalid image format. Please first convert into *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp or *.heic.')
|
225 |
-
return None, None, None, None
|
226 |
-
|
227 |
-
if output_format == "input":
|
228 |
-
if noisy_image is None:
|
229 |
-
output_format = "png"
|
230 |
else:
|
231 |
-
|
232 |
-
print("final output_format: " + str(output_format))
|
233 |
|
234 |
-
|
235 |
-
|
236 |
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
|
242 |
|
243 |
-
|
244 |
-
a_prompt = prompt + ", " + a_prompt
|
245 |
-
else:
|
246 |
-
a_prompt = prompt + a_prompt
|
247 |
-
print("Final prompt: " + str(a_prompt))
|
248 |
|
249 |
-
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
denoise_image = np.array(list(zip(*denoise_image))[::-1])
|
258 |
|
259 |
-
|
260 |
-
input_height, input_width, input_channel = denoise_image.shape
|
261 |
-
denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))
|
262 |
|
263 |
-
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
elif model_select == 'v0-F':
|
274 |
-
model.load_state_dict(ckpt_F, strict=False)
|
275 |
-
model.current_model = model_select
|
276 |
|
277 |
-
|
278 |
-
model.model.dtype = convert_dtype(diff_dtype)
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
-
def get_duration(
|
285 |
-
noisy_image,
|
286 |
-
input_image,
|
287 |
-
prompt,
|
288 |
-
a_prompt,
|
289 |
-
n_prompt,
|
290 |
-
num_samples,
|
291 |
-
min_size,
|
292 |
-
downscale,
|
293 |
-
upscale,
|
294 |
-
edm_steps,
|
295 |
-
s_stage1,
|
296 |
-
s_stage2,
|
297 |
-
s_cfg,
|
298 |
-
randomize_seed,
|
299 |
-
seed,
|
300 |
-
s_churn,
|
301 |
-
s_noise,
|
302 |
-
color_fix_type,
|
303 |
-
diff_dtype,
|
304 |
-
ae_dtype,
|
305 |
-
gamma_correction,
|
306 |
-
linear_CFG,
|
307 |
-
linear_s_stage2,
|
308 |
-
spt_linear_CFG,
|
309 |
-
spt_linear_s_stage2,
|
310 |
-
model_select,
|
311 |
-
output_format,
|
312 |
-
allocation
|
313 |
-
):
|
314 |
-
return allocation
|
315 |
|
316 |
@spaces.GPU(duration=get_duration)
|
317 |
-
def
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
s_noise,
|
335 |
-
color_fix_type,
|
336 |
-
diff_dtype,
|
337 |
-
ae_dtype,
|
338 |
-
gamma_correction,
|
339 |
-
linear_CFG,
|
340 |
-
linear_s_stage2,
|
341 |
-
spt_linear_CFG,
|
342 |
-
spt_linear_s_stage2,
|
343 |
-
model_select,
|
344 |
-
output_format,
|
345 |
-
allocation
|
346 |
-
):
|
347 |
-
start = time.time()
|
348 |
-
print('restore ==>>')
|
349 |
-
|
350 |
-
torch.cuda.set_device(SUPIR_device)
|
351 |
-
|
352 |
-
with torch.no_grad():
|
353 |
-
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
354 |
-
LQ = np.array(input_image) / 255.0
|
355 |
-
LQ = np.power(LQ, gamma_correction)
|
356 |
-
LQ *= 255.0
|
357 |
-
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
358 |
-
LQ = LQ / 255 * 2 - 1
|
359 |
-
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
360 |
-
captions = ['']
|
361 |
-
|
362 |
-
samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
|
363 |
-
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
|
364 |
-
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
|
365 |
-
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
|
366 |
-
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
|
367 |
-
|
368 |
-
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
|
369 |
-
0, 255).astype(np.uint8)
|
370 |
-
results = [x_samples[i] for i in range(num_samples)]
|
371 |
-
torch.cuda.empty_cache()
|
372 |
-
|
373 |
-
# All the results have the same size
|
374 |
-
input_height, input_width, input_channel = np.array(input_image).shape
|
375 |
-
result_height, result_width, result_channel = np.array(results[0]).shape
|
376 |
-
|
377 |
-
print('<<== restore')
|
378 |
-
end = time.time()
|
379 |
-
secondes = int(end - start)
|
380 |
-
minutes = math.floor(secondes / 60)
|
381 |
-
secondes = secondes - (minutes * 60)
|
382 |
-
hours = math.floor(minutes / 60)
|
383 |
-
minutes = minutes - (hours * 60)
|
384 |
-
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
385 |
-
"If you don't get the image you wanted, add more details in the « Image description ». " + \
|
386 |
-
"The image" + (" has" if len(results) == 1 else "s have") + " been generated in " + \
|
387 |
-
((str(hours) + " h, ") if hours != 0 else "") + \
|
388 |
-
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
389 |
-
str(secondes) + " sec. " + \
|
390 |
-
"The new image resolution is " + str(result_width) + \
|
391 |
-
" pixels large and " + str(result_height) + \
|
392 |
-
" pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels."
|
393 |
-
print(information)
|
394 |
-
try:
|
395 |
-
print("Initial resolution: " + f'{input_width * input_height:,}')
|
396 |
-
print("Final resolution: " + f'{result_width * result_height:,}')
|
397 |
-
print("edm_steps: " + str(edm_steps))
|
398 |
-
print("num_samples: " + str(num_samples))
|
399 |
-
print("downscale: " + str(downscale))
|
400 |
-
print("Estimated minutes: " + f'{(((result_width * result_height**(1/1.75)) * input_width * input_height * (edm_steps**(1/2)) * (num_samples**(1/2.5)))**(1/2.5)) / 25000:,}')
|
401 |
-
except Exception as e:
|
402 |
-
print('Exception of Estimation')
|
403 |
-
|
404 |
-
# Only one image can be shown in the slider
|
405 |
-
return [noisy_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True), gr.update(visible=True)
|
406 |
-
|
407 |
-
def load_and_reset(param_setting):
|
408 |
-
print('load_and_reset ==>>')
|
409 |
if torch.cuda.device_count() == 0:
|
410 |
gr.Warning('Set this space to GPU config to make it work.')
|
411 |
-
return None, None, None, None, None, None
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
spt_linear_s_stage2 = 0.0
|
425 |
-
linear_s_stage2 = False
|
426 |
-
linear_CFG = True
|
427 |
-
if param_setting == "Quality":
|
428 |
-
s_cfg = default_setting.s_cfg_Quality
|
429 |
-
spt_linear_CFG = default_setting.spt_linear_CFG_Quality
|
430 |
-
model_select = "v0-Q"
|
431 |
-
elif param_setting == "Fidelity":
|
432 |
-
s_cfg = default_setting.s_cfg_Fidelity
|
433 |
-
spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
|
434 |
-
model_select = "v0-F"
|
435 |
-
else:
|
436 |
-
raise NotImplementedError
|
437 |
-
gr.Info('The parameters are reset.')
|
438 |
-
print('<<== load_and_reset')
|
439 |
-
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
440 |
-
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
441 |
-
|
442 |
-
def log_information(result_gallery):
|
443 |
-
print('log_information')
|
444 |
-
if result_gallery is not None:
|
445 |
-
for i, result in enumerate(result_gallery):
|
446 |
-
print(result[0])
|
447 |
-
|
448 |
-
def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
|
449 |
-
print('on_select_result')
|
450 |
-
if result_gallery is not None:
|
451 |
-
for i, result in enumerate(result_gallery):
|
452 |
-
print(result[0])
|
453 |
-
return [result_slider[0], result_gallery[evt.index][0]]
|
454 |
-
|
455 |
-
title_html = """
|
456 |
-
<h1><center>SUPIR</center></h1>
|
457 |
-
<big><center>Upscale your images up to x10 freely, without account, without watermark and download it</center></big>
|
458 |
-
<center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
|
459 |
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
Due to Gradio issues, the generated image is slightly less satured than the original.
|
466 |
-
Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
|
467 |
-
You can also use <a href="https://huggingface.co/spaces/gokaygokay/AuraSR">AuraSR</a> to upscale x4.
|
468 |
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
if torch.cuda.device_count() == 0:
|
490 |
with gr.Row():
|
491 |
gr.HTML("""
|
492 |
-
<p style="background-color: red;"><big><big><big><b>⚠️To use
|
493 |
|
494 |
-
You can't use
|
495 |
</big></big></big></p>
|
496 |
""")
|
497 |
-
gr.
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
|
550 |
-
spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
|
551 |
-
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
|
552 |
-
with gr.Column():
|
553 |
-
linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
|
554 |
-
spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
|
555 |
-
maximum=1., value=0., step=0.05)
|
556 |
-
with gr.Column():
|
557 |
-
diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp32",
|
558 |
-
interactive=True)
|
559 |
-
with gr.Column():
|
560 |
-
ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
|
561 |
-
interactive=True)
|
562 |
-
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
|
563 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
|
564 |
-
with gr.Group():
|
565 |
-
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value = "Quality")
|
566 |
-
restart_button = gr.Button(value="Apply presetting")
|
567 |
-
|
568 |
-
with gr.Column():
|
569 |
-
diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant = "primary", elem_id = "process_button")
|
570 |
-
reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible = False)
|
571 |
-
|
572 |
-
warning = gr.HTML(value = "<center><big>Your computer must <u>not</u> enter into standby mode.</big><br/>On Chrome, you can force to keep a tab alive in <code>chrome://discards/</code></center>", visible = False)
|
573 |
-
restore_information = gr.HTML(value = "Restart the process to get another result.", visible = False)
|
574 |
-
result_slider = ImageSlider(label = 'Comparator', show_label = False, interactive = False, elem_id = "slider1", show_download_button = False)
|
575 |
-
result_gallery = gr.Gallery(label = 'Downloadable results', show_label = True, interactive = False, elem_id = "gallery1")
|
576 |
-
|
577 |
-
gr.Examples(
|
578 |
-
examples = [
|
579 |
-
[
|
580 |
-
"./Examples/Example1.png",
|
581 |
-
0,
|
582 |
-
None,
|
583 |
-
"Group of people, walking, happy, in the street, photorealistic, 8k, extremely detailled",
|
584 |
-
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
585 |
-
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, pixel, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
|
586 |
-
2,
|
587 |
-
1024,
|
588 |
-
1,
|
589 |
-
8,
|
590 |
-
100,
|
591 |
-
-1,
|
592 |
-
1,
|
593 |
-
7.5,
|
594 |
-
False,
|
595 |
-
42,
|
596 |
-
5,
|
597 |
-
1.003,
|
598 |
-
"AdaIn",
|
599 |
-
"fp16",
|
600 |
-
"bf16",
|
601 |
-
1.0,
|
602 |
-
True,
|
603 |
-
4,
|
604 |
-
False,
|
605 |
-
0.,
|
606 |
-
"v0-Q",
|
607 |
-
"input",
|
608 |
-
179
|
609 |
-
],
|
610 |
-
[
|
611 |
-
"./Examples/Example2.jpeg",
|
612 |
-
0,
|
613 |
-
None,
|
614 |
-
"La cabeza de un gato atigrado, en una casa, fotorrealista, 8k, extremadamente detallada",
|
615 |
-
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
616 |
-
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, pixel, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
|
617 |
-
1,
|
618 |
-
1024,
|
619 |
-
1,
|
620 |
-
1,
|
621 |
-
200,
|
622 |
-
-1,
|
623 |
-
1,
|
624 |
-
7.5,
|
625 |
-
False,
|
626 |
-
42,
|
627 |
-
5,
|
628 |
-
1.003,
|
629 |
-
"Wavelet",
|
630 |
-
"fp16",
|
631 |
-
"bf16",
|
632 |
-
1.0,
|
633 |
-
True,
|
634 |
-
4,
|
635 |
-
False,
|
636 |
-
0.,
|
637 |
-
"v0-Q",
|
638 |
-
"input",
|
639 |
-
179
|
640 |
-
],
|
641 |
-
[
|
642 |
-
"./Examples/Example3.webp",
|
643 |
-
0,
|
644 |
-
None,
|
645 |
-
"A red apple",
|
646 |
-
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
647 |
-
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, pixel, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
|
648 |
-
1,
|
649 |
-
1024,
|
650 |
-
1,
|
651 |
-
1,
|
652 |
-
200,
|
653 |
-
-1,
|
654 |
-
1,
|
655 |
-
7.5,
|
656 |
-
False,
|
657 |
-
42,
|
658 |
-
5,
|
659 |
-
1.003,
|
660 |
-
"Wavelet",
|
661 |
-
"fp16",
|
662 |
-
"bf16",
|
663 |
-
1.0,
|
664 |
-
True,
|
665 |
-
4,
|
666 |
-
False,
|
667 |
-
0.,
|
668 |
-
"v0-Q",
|
669 |
-
"input",
|
670 |
-
179
|
671 |
-
],
|
672 |
-
[
|
673 |
-
"./Examples/Example3.webp",
|
674 |
-
0,
|
675 |
-
None,
|
676 |
-
"A red marble",
|
677 |
-
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
678 |
-
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, pixel, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
|
679 |
-
1,
|
680 |
-
1024,
|
681 |
-
1,
|
682 |
-
1,
|
683 |
-
200,
|
684 |
-
-1,
|
685 |
-
1,
|
686 |
-
7.5,
|
687 |
-
False,
|
688 |
-
42,
|
689 |
-
5,
|
690 |
-
1.003,
|
691 |
-
"Wavelet",
|
692 |
-
"fp16",
|
693 |
-
"bf16",
|
694 |
-
1.0,
|
695 |
-
True,
|
696 |
-
4,
|
697 |
-
False,
|
698 |
-
0.,
|
699 |
-
"v0-Q",
|
700 |
-
"input",
|
701 |
-
179
|
702 |
-
],
|
703 |
-
],
|
704 |
-
run_on_click = True,
|
705 |
-
fn = stage2_process,
|
706 |
-
inputs = [
|
707 |
-
input_image,
|
708 |
-
rotation,
|
709 |
-
denoise_image,
|
710 |
-
prompt,
|
711 |
-
a_prompt,
|
712 |
-
n_prompt,
|
713 |
-
num_samples,
|
714 |
-
min_size,
|
715 |
-
downscale,
|
716 |
-
upscale,
|
717 |
-
edm_steps,
|
718 |
-
s_stage1,
|
719 |
-
s_stage2,
|
720 |
-
s_cfg,
|
721 |
-
randomize_seed,
|
722 |
-
seed,
|
723 |
-
s_churn,
|
724 |
-
s_noise,
|
725 |
-
color_fix_type,
|
726 |
-
diff_dtype,
|
727 |
-
ae_dtype,
|
728 |
-
gamma_correction,
|
729 |
-
linear_CFG,
|
730 |
-
linear_s_stage2,
|
731 |
-
spt_linear_CFG,
|
732 |
-
spt_linear_s_stage2,
|
733 |
-
model_select,
|
734 |
-
output_format,
|
735 |
-
allocation
|
736 |
-
],
|
737 |
-
outputs = [
|
738 |
-
result_slider,
|
739 |
-
result_gallery,
|
740 |
-
restore_information,
|
741 |
-
reset_btn
|
742 |
-
],
|
743 |
-
cache_examples = False,
|
744 |
-
)
|
745 |
|
746 |
with gr.Row(visible=False):
|
747 |
gr.Examples(
|
748 |
examples = [
|
749 |
[
|
750 |
-
"./
|
751 |
-
|
752 |
-
|
753 |
-
"
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
42,
|
766 |
-
5,
|
767 |
-
1.003,
|
768 |
-
"AdaIn",
|
769 |
-
"fp16",
|
770 |
-
"bf16",
|
771 |
-
1.0,
|
772 |
-
True,
|
773 |
-
4,
|
774 |
-
False,
|
775 |
-
0.,
|
776 |
-
"v0-Q",
|
777 |
-
"input",
|
778 |
-
179
|
779 |
],
|
780 |
[
|
781 |
-
"./
|
782 |
-
|
783 |
-
|
784 |
-
"
|
785 |
-
|
786 |
-
|
787 |
-
1,
|
788 |
-
|
789 |
-
|
790 |
-
1,
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
42,
|
797 |
-
5,
|
798 |
-
1.003,
|
799 |
-
"Wavelet",
|
800 |
-
"fp16",
|
801 |
-
"bf16",
|
802 |
-
1.0,
|
803 |
-
True,
|
804 |
-
4,
|
805 |
-
False,
|
806 |
-
0.,
|
807 |
-
"v0-Q",
|
808 |
-
"input",
|
809 |
-
179
|
810 |
],
|
811 |
[
|
812 |
-
"./
|
813 |
-
|
814 |
-
|
815 |
-
"
|
816 |
-
|
817 |
-
|
818 |
-
1,
|
819 |
-
|
820 |
-
|
821 |
-
1,
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
42,
|
828 |
-
5,
|
829 |
-
1.003,
|
830 |
-
"Wavelet",
|
831 |
-
"fp16",
|
832 |
-
"bf16",
|
833 |
-
1.0,
|
834 |
-
True,
|
835 |
-
4,
|
836 |
-
False,
|
837 |
-
0.,
|
838 |
-
"v0-Q",
|
839 |
-
"input",
|
840 |
-
179
|
841 |
],
|
842 |
[
|
843 |
-
"./
|
844 |
-
|
845 |
-
|
846 |
-
"
|
847 |
-
|
848 |
-
|
849 |
-
1,
|
850 |
-
|
851 |
-
|
852 |
-
1,
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
42,
|
859 |
-
5,
|
860 |
-
1.003,
|
861 |
-
"Wavelet",
|
862 |
-
"fp16",
|
863 |
-
"bf16",
|
864 |
-
1.0,
|
865 |
-
True,
|
866 |
-
4,
|
867 |
-
False,
|
868 |
-
0.,
|
869 |
-
"v0-Q",
|
870 |
-
"input",
|
871 |
-
179
|
872 |
],
|
873 |
],
|
874 |
run_on_click = True,
|
875 |
-
fn =
|
876 |
-
inputs =
|
877 |
-
|
878 |
-
|
879 |
-
denoise_image,
|
880 |
-
prompt,
|
881 |
-
a_prompt,
|
882 |
-
n_prompt,
|
883 |
-
num_samples,
|
884 |
-
min_size,
|
885 |
-
downscale,
|
886 |
-
upscale,
|
887 |
-
edm_steps,
|
888 |
-
s_stage1,
|
889 |
-
s_stage2,
|
890 |
-
s_cfg,
|
891 |
-
randomize_seed,
|
892 |
-
seed,
|
893 |
-
s_churn,
|
894 |
-
s_noise,
|
895 |
-
color_fix_type,
|
896 |
-
diff_dtype,
|
897 |
-
ae_dtype,
|
898 |
-
gamma_correction,
|
899 |
-
linear_CFG,
|
900 |
-
linear_s_stage2,
|
901 |
-
spt_linear_CFG,
|
902 |
-
spt_linear_s_stage2,
|
903 |
-
model_select,
|
904 |
-
output_format,
|
905 |
-
allocation
|
906 |
-
],
|
907 |
-
outputs = [
|
908 |
-
result_slider,
|
909 |
-
restore_information,
|
910 |
-
reset_btn
|
911 |
-
],
|
912 |
-
cache_examples = "lazy",
|
913 |
)
|
|
|
|
|
914 |
|
915 |
-
with gr.Row():
|
916 |
-
gr.Markdown(claim_md)
|
917 |
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
rotation,
|
946 |
-
denoise_image,
|
947 |
-
prompt,
|
948 |
-
a_prompt,
|
949 |
-
n_prompt,
|
950 |
-
num_samples,
|
951 |
-
min_size,
|
952 |
-
downscale,
|
953 |
-
upscale,
|
954 |
-
edm_steps,
|
955 |
-
s_stage1,
|
956 |
-
s_stage2,
|
957 |
-
s_cfg,
|
958 |
-
randomize_seed,
|
959 |
-
seed,
|
960 |
-
s_churn,
|
961 |
-
s_noise,
|
962 |
-
color_fix_type,
|
963 |
-
diff_dtype,
|
964 |
-
ae_dtype,
|
965 |
-
gamma_correction,
|
966 |
-
linear_CFG,
|
967 |
-
linear_s_stage2,
|
968 |
-
spt_linear_CFG,
|
969 |
-
spt_linear_s_stage2,
|
970 |
-
model_select,
|
971 |
-
output_format,
|
972 |
-
allocation
|
973 |
-
], outputs = [
|
974 |
-
result_slider,
|
975 |
-
result_gallery,
|
976 |
-
restore_information,
|
977 |
-
reset_btn
|
978 |
-
]).success(fn = log_information, inputs = [
|
979 |
-
result_gallery
|
980 |
-
], outputs = [], queue = False, show_progress = False)
|
981 |
-
|
982 |
-
result_gallery.change(on_select_result, [result_slider, result_gallery], result_slider)
|
983 |
-
result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)
|
984 |
-
|
985 |
-
restart_button.click(fn = load_and_reset, inputs = [
|
986 |
-
param_setting
|
987 |
-
], outputs = [
|
988 |
-
edm_steps,
|
989 |
-
s_cfg,
|
990 |
-
s_stage2,
|
991 |
-
s_stage1,
|
992 |
-
s_churn,
|
993 |
-
s_noise,
|
994 |
-
a_prompt,
|
995 |
-
n_prompt,
|
996 |
-
color_fix_type,
|
997 |
-
linear_CFG,
|
998 |
-
linear_s_stage2,
|
999 |
-
spt_linear_CFG,
|
1000 |
-
spt_linear_s_stage2,
|
1001 |
-
model_select
|
1002 |
-
])
|
1003 |
-
|
1004 |
-
reset_btn.click(fn = reset, inputs = [], outputs = [
|
1005 |
-
input_image,
|
1006 |
-
rotation,
|
1007 |
-
denoise_image,
|
1008 |
-
prompt,
|
1009 |
-
a_prompt,
|
1010 |
-
n_prompt,
|
1011 |
-
num_samples,
|
1012 |
-
min_size,
|
1013 |
-
downscale,
|
1014 |
-
upscale,
|
1015 |
-
edm_steps,
|
1016 |
-
s_stage1,
|
1017 |
-
s_stage2,
|
1018 |
-
s_cfg,
|
1019 |
-
randomize_seed,
|
1020 |
-
seed,
|
1021 |
-
s_churn,
|
1022 |
-
s_noise,
|
1023 |
-
color_fix_type,
|
1024 |
-
diff_dtype,
|
1025 |
-
ae_dtype,
|
1026 |
-
gamma_correction,
|
1027 |
-
linear_CFG,
|
1028 |
-
linear_s_stage2,
|
1029 |
-
spt_linear_CFG,
|
1030 |
-
spt_linear_s_stage2,
|
1031 |
-
model_select,
|
1032 |
-
output_format,
|
1033 |
-
allocation
|
1034 |
-
], queue = False, show_progress = False)
|
1035 |
-
|
1036 |
-
interface.queue(10).launch()
|
|
|
1 |
+
from diffusers_helper.hf_login import login
|
2 |
+
|
3 |
import os
|
4 |
+
|
5 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
6 |
+
|
7 |
import gradio as gr
|
|
|
|
|
8 |
import torch
|
9 |
+
import traceback
|
10 |
import einops
|
11 |
+
import safetensors.torch as sf
|
12 |
+
import numpy as np
|
13 |
import math
|
|
|
14 |
import random
|
15 |
import spaces
|
|
|
|
|
16 |
|
|
|
17 |
from PIL import Image
|
18 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
19 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
20 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
21 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
22 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
23 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
24 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
25 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
26 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
27 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
28 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
29 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
30 |
+
|
31 |
+
|
32 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
33 |
+
high_vram = free_mem_gb > 80
|
34 |
+
|
35 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
36 |
+
print(f'High-VRAM Mode: {high_vram}')
|
37 |
+
|
38 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
39 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
40 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
41 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
42 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
43 |
+
|
44 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
45 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
46 |
+
|
47 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
|
48 |
+
|
49 |
+
vae.eval()
|
50 |
+
text_encoder.eval()
|
51 |
+
text_encoder_2.eval()
|
52 |
+
image_encoder.eval()
|
53 |
+
transformer.eval()
|
54 |
+
|
55 |
+
if not high_vram:
|
56 |
+
vae.enable_slicing()
|
57 |
+
vae.enable_tiling()
|
58 |
+
|
59 |
+
transformer.high_quality_fp32_output_for_inference = True
|
60 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
61 |
+
|
62 |
+
transformer.to(dtype=torch.bfloat16)
|
63 |
+
vae.to(dtype=torch.float16)
|
64 |
+
image_encoder.to(dtype=torch.float16)
|
65 |
+
text_encoder.to(dtype=torch.float16)
|
66 |
+
text_encoder_2.to(dtype=torch.float16)
|
67 |
+
|
68 |
+
vae.requires_grad_(False)
|
69 |
+
text_encoder.requires_grad_(False)
|
70 |
+
text_encoder_2.requires_grad_(False)
|
71 |
+
image_encoder.requires_grad_(False)
|
72 |
+
transformer.requires_grad_(False)
|
73 |
+
|
74 |
+
if not high_vram:
|
75 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
76 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
77 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
78 |
+
else:
|
79 |
+
text_encoder.to(gpu)
|
80 |
+
text_encoder_2.to(gpu)
|
81 |
+
image_encoder.to(gpu)
|
82 |
+
vae.to(gpu)
|
83 |
+
transformer.to(gpu)
|
84 |
+
|
85 |
+
stream = AsyncStream()
|
86 |
+
|
87 |
+
outputs_folder = './outputs/'
|
88 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
89 |
+
|
90 |
+
input_image_debug_value = prompt_debug_value = total_second_length_debug_value = None
|
91 |
+
|
92 |
+
@torch.no_grad()
|
93 |
+
def worker(input_image, prompts, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
94 |
+
def encode_prompt(prompt, n_prompt):
|
95 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
96 |
+
|
97 |
+
if cfg == 1:
|
98 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
else:
|
100 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
|
|
101 |
|
102 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
103 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
104 |
|
105 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
106 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
107 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
108 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
109 |
+
return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n]
|
110 |
|
111 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
112 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
113 |
|
114 |
+
job_id = generate_timestamp()
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
117 |
|
118 |
+
try:
|
119 |
+
# Clean GPU
|
120 |
+
if not high_vram:
|
121 |
+
unload_complete_models(
|
122 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
123 |
+
)
|
|
|
124 |
|
125 |
+
# Text encoding
|
|
|
|
|
126 |
|
127 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
128 |
|
129 |
+
if not high_vram:
|
130 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
131 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
132 |
|
133 |
+
prompt_parameters = []
|
134 |
+
|
135 |
+
for prompt_part in prompts:
|
136 |
+
prompt_parameters.append(encode_prompt(prompt_part, n_prompt))
|
|
|
|
|
|
|
137 |
|
138 |
+
# Processing input image
|
|
|
139 |
|
140 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
141 |
+
|
142 |
+
H, W, C = input_image.shape
|
143 |
+
height, width = find_nearest_bucket(H, W, resolution=640)
|
144 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
145 |
+
|
146 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
147 |
+
|
148 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
149 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
150 |
+
|
151 |
+
# VAE encoding
|
152 |
+
|
153 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
154 |
+
|
155 |
+
if not high_vram:
|
156 |
+
load_model_as_complete(vae, target_device=gpu)
|
157 |
+
|
158 |
+
start_latent = vae_encode(input_image_pt, vae)
|
159 |
+
|
160 |
+
# CLIP Vision
|
161 |
+
|
162 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
163 |
+
|
164 |
+
if not high_vram:
|
165 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
166 |
+
|
167 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
168 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
169 |
+
|
170 |
+
# Dtype
|
171 |
+
|
172 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
173 |
+
|
174 |
+
# Sampling
|
175 |
+
|
176 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
177 |
+
|
178 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
179 |
+
|
180 |
+
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
181 |
+
history_pixels = None
|
182 |
+
|
183 |
+
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
184 |
+
total_generated_latent_frames = 1
|
185 |
+
|
186 |
+
for section_index in range(total_latent_sections):
|
187 |
+
if stream.input_queue.top() == 'end':
|
188 |
+
stream.output_queue.push(('end', None))
|
189 |
+
return
|
190 |
+
|
191 |
+
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
192 |
+
|
193 |
+
if len(prompt_parameters) > 0:
|
194 |
+
[llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(0)
|
195 |
+
|
196 |
+
if not high_vram:
|
197 |
+
unload_complete_models()
|
198 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
199 |
+
|
200 |
+
if use_teacache:
|
201 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
202 |
+
else:
|
203 |
+
transformer.initialize_teacache(enable_teacache=False)
|
204 |
+
|
205 |
+
def callback(d):
|
206 |
+
preview = d['denoised']
|
207 |
+
preview = vae_decode_fake(preview)
|
208 |
+
|
209 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
210 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
211 |
+
|
212 |
+
if stream.input_queue.top() == 'end':
|
213 |
+
stream.output_queue.push(('end', None))
|
214 |
+
raise KeyboardInterrupt('User ends the task.')
|
215 |
+
|
216 |
+
current_step = d['i'] + 1
|
217 |
+
percentage = int(100.0 * current_step / steps)
|
218 |
+
hint = f'Sampling {current_step}/{steps}'
|
219 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
|
220 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
221 |
+
return
|
222 |
+
|
223 |
+
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
224 |
+
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
225 |
+
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
226 |
+
|
227 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
|
228 |
+
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
229 |
+
|
230 |
+
generated_latents = sample_hunyuan(
|
231 |
+
transformer=transformer,
|
232 |
+
sampler='unipc',
|
233 |
+
width=width,
|
234 |
+
height=height,
|
235 |
+
frames=latent_window_size * 4 - 3,
|
236 |
+
real_guidance_scale=cfg,
|
237 |
+
distilled_guidance_scale=gs,
|
238 |
+
guidance_rescale=rs,
|
239 |
+
# shift=3.0,
|
240 |
+
num_inference_steps=steps,
|
241 |
+
generator=rnd,
|
242 |
+
prompt_embeds=llama_vec,
|
243 |
+
prompt_embeds_mask=llama_attention_mask,
|
244 |
+
prompt_poolers=clip_l_pooler,
|
245 |
+
negative_prompt_embeds=llama_vec_n,
|
246 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
247 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
248 |
+
device=gpu,
|
249 |
+
dtype=torch.bfloat16,
|
250 |
+
image_embeddings=image_encoder_last_hidden_state,
|
251 |
+
latent_indices=latent_indices,
|
252 |
+
clean_latents=clean_latents,
|
253 |
+
clean_latent_indices=clean_latent_indices,
|
254 |
+
clean_latents_2x=clean_latents_2x,
|
255 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
256 |
+
clean_latents_4x=clean_latents_4x,
|
257 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
258 |
+
callback=callback,
|
259 |
+
)
|
260 |
+
|
261 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
262 |
+
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
263 |
+
|
264 |
+
if not high_vram:
|
265 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
266 |
+
load_model_as_complete(vae, target_device=gpu)
|
267 |
+
|
268 |
+
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
269 |
+
|
270 |
+
if history_pixels is None:
|
271 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
272 |
+
else:
|
273 |
+
section_latent_frames = latent_window_size * 2
|
274 |
+
overlapped_frames = latent_window_size * 4 - 3
|
275 |
+
|
276 |
+
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
277 |
+
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
278 |
+
|
279 |
+
if not high_vram:
|
280 |
+
unload_complete_models()
|
281 |
+
|
282 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
283 |
+
|
284 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
285 |
+
|
286 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
287 |
+
|
288 |
+
stream.output_queue.push(('file', output_filename))
|
289 |
+
except:
|
290 |
+
traceback.print_exc()
|
291 |
+
|
292 |
+
if not high_vram:
|
293 |
+
unload_complete_models(
|
294 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
295 |
+
)
|
296 |
+
|
297 |
+
stream.output_queue.push(('end', None))
|
298 |
+
return
|
299 |
+
|
300 |
+
def get_duration(input_image, prompt, t2v, n_prompt, randomize_seed, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
301 |
+
global total_second_length_debug_value
|
302 |
+
|
303 |
+
if total_second_length_debug_value is not None:
|
304 |
+
return min(total_second_length_debug_value * 60, 600)
|
305 |
+
return total_second_length * 60
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
@spaces.GPU(duration=get_duration)
|
309 |
+
def process(input_image, prompt,
|
310 |
+
t2v=False,
|
311 |
+
n_prompt="",
|
312 |
+
randomize_seed=True,
|
313 |
+
seed=31337,
|
314 |
+
total_second_length=5,
|
315 |
+
latent_window_size=9,
|
316 |
+
steps=25,
|
317 |
+
cfg=1.0,
|
318 |
+
gs=10.0,
|
319 |
+
rs=0.0,
|
320 |
+
gpu_memory_preservation=6,
|
321 |
+
use_teacache=True,
|
322 |
+
mp4_crf=16
|
323 |
+
):
|
324 |
+
global stream, input_image_debug_value, prompt_debug_value, total_second_length_debug_value
|
325 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
if torch.cuda.device_count() == 0:
|
327 |
gr.Warning('Set this space to GPU config to make it work.')
|
328 |
+
return None, None, None, None, None, None
|
329 |
+
|
330 |
+
if input_image_debug_value is not None or prompt_debug_value is not None or total_second_length_debug_value is not None:
|
331 |
+
print("Debug mode")
|
332 |
+
input_image = input_image_debug_value
|
333 |
+
prompt = prompt_debug_value
|
334 |
+
total_second_length = total_second_length_debug_value
|
335 |
+
input_image_debug_value = prompt_debug_value = total_second_length_debug_value = None
|
336 |
+
|
337 |
+
if randomize_seed:
|
338 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
339 |
+
|
340 |
+
prompts = prompt.split(";")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
+
# assert input_image is not None, 'No input image!'
|
343 |
+
if t2v:
|
344 |
+
default_height, default_width = 640, 640
|
345 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
346 |
+
print("No input image provided. Using a blank white image.")
|
|
|
|
|
|
|
347 |
|
348 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
349 |
+
|
350 |
+
stream = AsyncStream()
|
351 |
+
|
352 |
+
async_run(worker, input_image, prompts, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
|
353 |
+
|
354 |
+
output_filename = None
|
355 |
+
|
356 |
+
while True:
|
357 |
+
flag, data = stream.output_queue.next()
|
358 |
+
|
359 |
+
if flag == 'file':
|
360 |
+
output_filename = data
|
361 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
362 |
+
|
363 |
+
if flag == 'progress':
|
364 |
+
preview, desc, html = data
|
365 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
366 |
+
|
367 |
+
if flag == 'end':
|
368 |
+
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
369 |
+
break
|
370 |
+
|
371 |
+
|
372 |
+
def end_process():
|
373 |
+
stream.input_queue.push('end')
|
374 |
+
|
375 |
+
|
376 |
+
css = make_progress_bar_css()
|
377 |
+
block = gr.Blocks(css=css).queue()
|
378 |
+
with block:
|
379 |
if torch.cuda.device_count() == 0:
|
380 |
with gr.Row():
|
381 |
gr.HTML("""
|
382 |
+
<p style="background-color: red;"><big><big><big><b>⚠️To use FramePack, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
|
383 |
|
384 |
+
You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
|
385 |
</big></big></big></p>
|
386 |
""")
|
387 |
+
gr.Markdown('# FramePack-F1')
|
388 |
+
gr.Markdown(f"""### Video diffusion, but feels like image diffusion
|
389 |
+
*FramePack F1 - a FramePack model that only predicts future frames from history frames*
|
390 |
+
### *beta* FramePack Fill 🖋️- draw a mask over the input image to inpaint the video output
|
391 |
+
adapted from the officical code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) 🙌🏻
|
392 |
+
""")
|
393 |
+
with gr.Row():
|
394 |
+
with gr.Column():
|
395 |
+
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
396 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
397 |
+
t2v = gr.Checkbox(label="do text-to-video", value=False)
|
398 |
+
|
399 |
+
with gr.Row():
|
400 |
+
start_button = gr.Button(value="Start Generation", variant="primary")
|
401 |
+
end_button = gr.Button(value="End Generation", variant="stop", interactive=False)
|
402 |
+
|
403 |
+
total_second_length = gr.Slider(label="Generated Video Length (Seconds)", minimum=1, maximum=5, value=2, step=0.1)
|
404 |
+
with gr.Accordion("Advanced settings", open=False):
|
405 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
406 |
+
|
407 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, blurred, blurry") # Not used
|
408 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
|
409 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
|
410 |
+
|
411 |
+
|
412 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1) # Should not change
|
413 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
|
414 |
+
|
415 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01) # Should not change
|
416 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended; 3=blurred motions& & unsharped; 10 focus motion')
|
417 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01) # Should not change
|
418 |
+
|
419 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
420 |
+
|
421 |
+
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
422 |
+
|
423 |
+
with gr.Accordion("Debug", open=False):
|
424 |
+
input_image_debug = gr.Image(type="numpy", label="Image Debug", height=320)
|
425 |
+
prompt_debug = gr.Textbox(label="Prompt Debug", value='')
|
426 |
+
total_second_length_debug = gr.Slider(label="Additional Video Length to Generate (Seconds) Debug", minimum=1, maximum=120, value=5, step=0.1)
|
427 |
+
|
428 |
+
with gr.Column():
|
429 |
+
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
430 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
431 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
432 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
433 |
+
|
434 |
+
gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
|
435 |
+
|
436 |
+
ips = [input_image, prompt, t2v, n_prompt, randomize_seed, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
|
437 |
+
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
438 |
+
end_button.click(fn=end_process)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
with gr.Row(visible=False):
|
441 |
gr.Examples(
|
442 |
examples = [
|
443 |
[
|
444 |
+
"./img_examples/Example1.png", # input_image
|
445 |
+
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
446 |
+
False, # t2v
|
447 |
+
"Missing arm, unrealistic position, blurred, blurry", # n_prompt
|
448 |
+
True, # randomize_seed
|
449 |
+
42, # seed
|
450 |
+
1, # total_second_length
|
451 |
+
9, # latent_window_size
|
452 |
+
25, # steps
|
453 |
+
1.0, # cfg
|
454 |
+
10.0, # gs
|
455 |
+
0.0, # rs
|
456 |
+
6, # gpu_memory_preservation
|
457 |
+
True, # use_teacache
|
458 |
+
16 # mp4_crf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
],
|
460 |
[
|
461 |
+
"./img_examples/Example1.png", # input_image
|
462 |
+
"A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
463 |
+
False, # t2v
|
464 |
+
"Missing arm, unrealistic position, blurred, blurry", # n_prompt
|
465 |
+
True, # randomize_seed
|
466 |
+
42, # seed
|
467 |
+
1, # total_second_length
|
468 |
+
9, # latent_window_size
|
469 |
+
25, # steps
|
470 |
+
1.0, # cfg
|
471 |
+
10.0, # gs
|
472 |
+
0.0, # rs
|
473 |
+
6, # gpu_memory_preservation
|
474 |
+
True, # use_teacache
|
475 |
+
16 # mp4_crf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
],
|
477 |
[
|
478 |
+
"./img_examples/Example1.png", # input_image
|
479 |
+
"We are sinking, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
480 |
+
False, # t2v
|
481 |
+
"Missing arm, unrealistic position, blurred, blurry", # n_prompt
|
482 |
+
True, # randomize_seed
|
483 |
+
42, # seed
|
484 |
+
1, # total_second_length
|
485 |
+
9, # latent_window_size
|
486 |
+
25, # steps
|
487 |
+
1.0, # cfg
|
488 |
+
10.0, # gs
|
489 |
+
0.0, # rs
|
490 |
+
6, # gpu_memory_preservation
|
491 |
+
True, # use_teacache
|
492 |
+
16 # mp4_crf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
],
|
494 |
[
|
495 |
+
"./img_examples/Example1.png", # input_image
|
496 |
+
"A boat is passing, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
497 |
+
False, # t2v
|
498 |
+
"Missing arm, unrealistic position, blurred, blurry", # n_prompt
|
499 |
+
True, # randomize_seed
|
500 |
+
42, # seed
|
501 |
+
1, # total_second_length
|
502 |
+
9, # latent_window_size
|
503 |
+
25, # steps
|
504 |
+
1.0, # cfg
|
505 |
+
10.0, # gs
|
506 |
+
0.0, # rs
|
507 |
+
6, # gpu_memory_preservation
|
508 |
+
True, # use_teacache
|
509 |
+
16 # mp4_crf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
],
|
511 |
],
|
512 |
run_on_click = True,
|
513 |
+
fn = process,
|
514 |
+
inputs = ips,
|
515 |
+
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
516 |
+
cache_examples = True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
)
|
518 |
+
gr.Markdown('## Guide')
|
519 |
+
gr.Markdown("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.")
|
520 |
|
|
|
|
|
521 |
|
522 |
+
def handle_field_debug_change(input_image_debug_data, prompt_debug_data, total_second_length_debug_data):
|
523 |
+
global input_image_debug_value, prompt_debug_value, total_second_length_debug_value
|
524 |
+
input_image_debug_value = input_image_debug_data
|
525 |
+
prompt_debug_value = prompt_debug_data
|
526 |
+
total_second_length_debug_value = total_second_length_debug_data
|
527 |
+
return []
|
528 |
+
|
529 |
+
input_image_debug.upload(
|
530 |
+
fn=handle_field_debug_change,
|
531 |
+
inputs=[input_image_debug, prompt_debug, total_second_length_debug],
|
532 |
+
outputs=[]
|
533 |
+
)
|
534 |
+
|
535 |
+
prompt_debug.change(
|
536 |
+
fn=handle_field_debug_change,
|
537 |
+
inputs=[input_image_debug, prompt_debug, total_second_length_debug],
|
538 |
+
outputs=[]
|
539 |
+
)
|
540 |
+
|
541 |
+
total_second_length_debug.change(
|
542 |
+
fn=handle_field_debug_change,
|
543 |
+
inputs=[input_image_debug, prompt_debug, total_second_length_debug],
|
544 |
+
outputs=[]
|
545 |
+
)
|
546 |
+
|
547 |
+
|
548 |
+
block.launch(mcp_server=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_endframe.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
app_v2v.py
CHANGED
@@ -545,6 +545,10 @@ def get_duration(input_video, prompt, n_prompt, seed, batch, resolution, total_s
|
|
545 |
def process(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
546 |
global stream, high_vram, input_video_debug_value, prompt_debug_value, total_second_length_debug_value
|
547 |
|
|
|
|
|
|
|
|
|
548 |
if input_video_debug_value is not None:
|
549 |
input_video = input_video_debug_value
|
550 |
input_video_debug_value = None
|
|
|
545 |
def process(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
546 |
global stream, high_vram, input_video_debug_value, prompt_debug_value, total_second_length_debug_value
|
547 |
|
548 |
+
if torch.cuda.device_count() == 0:
|
549 |
+
gr.Warning('Set this space to GPU config to make it work.')
|
550 |
+
return None, None, None, None, None, None
|
551 |
+
|
552 |
if input_video_debug_value is not None:
|
553 |
input_video = input_video_debug_value
|
554 |
input_video_debug_value = None
|
requirements.txt
CHANGED
@@ -1,41 +1,23 @@
|
|
1 |
-
|
2 |
-
fastapi==0.115.8
|
3 |
-
gradio_imageslider==0.0.20
|
4 |
-
gradio_client==1.7.0
|
5 |
-
numpy==1.26.4
|
6 |
-
requests==2.32.3
|
7 |
-
sentencepiece==0.2.0
|
8 |
-
tokenizers==0.19.1
|
9 |
-
torchvision==0.22.0
|
10 |
-
uvicorn==0.30.1
|
11 |
-
wandb==0.17.4
|
12 |
-
httpx==0.27.0
|
13 |
-
transformers==4.42.4
|
14 |
-
accelerate==0.32.1
|
15 |
-
scikit-learn==1.5.1
|
16 |
-
einops==0.8.0
|
17 |
-
einops-exts==0.0.4
|
18 |
-
timm==1.0.7
|
19 |
-
openai-clip==1.0.1
|
20 |
-
fsspec==2024.6.1
|
21 |
-
kornia==0.7.3
|
22 |
-
matplotlib==3.9.1
|
23 |
-
ninja==1.11.1.1
|
24 |
-
omegaconf==2.3.0
|
25 |
-
opencv-python==4.10.0.84
|
26 |
-
pandas==2.2.2
|
27 |
-
pillow==10.4.0
|
28 |
-
pytorch-lightning==2.3.3
|
29 |
-
PyYAML==6.0.1
|
30 |
-
scipy==1.14.0
|
31 |
-
tqdm==4.66.4
|
32 |
-
triton==3.3.0
|
33 |
-
urllib3==2.2.2
|
34 |
-
webdataset==0.2.86
|
35 |
-
xformers==0.0.30
|
36 |
-
facexlib==0.3.0
|
37 |
-
k-diffusion==0.1.1.post1
|
38 |
diffusers==0.33.1
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==1.6.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
diffusers==0.33.1
|
3 |
+
transformers==4.46.2
|
4 |
+
sentencepiece==0.2.0
|
5 |
+
pillow==11.1.0
|
6 |
+
av==12.1.0
|
7 |
+
numpy==1.26.2
|
8 |
+
scipy==1.12.0
|
9 |
+
requests==2.31.0
|
10 |
+
torchsde==0.2.6
|
11 |
+
torch>=2.0.0
|
12 |
+
torchvision
|
13 |
+
torchaudio
|
14 |
+
einops
|
15 |
+
opencv-contrib-python
|
16 |
+
safetensors
|
17 |
+
huggingface_hub
|
18 |
+
spaces
|
19 |
+
decord
|
20 |
+
imageio_ffmpeg
|
21 |
+
sageattention
|
22 |
+
xformers
|
23 |
+
bitsandbytes
|