Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import logging | |
| import math | |
| import os | |
| import random | |
| from pathlib import Path | |
| import accelerate | |
| import datasets | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration, set_seed | |
| from datasets import load_dataset | |
| from huggingface_hub import create_repo, upload_folder | |
| from packaging import version | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| import diffusers | |
| from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import EMAModel | |
| from diffusers.utils import check_min_version, deprecate | |
| from diffusers.utils.import_utils import is_xformers_available | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.15.0.dev0") | |
| logger = get_logger(__name__, log_level="INFO") | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--image_column", type=str, default="image", help="The column of the dataset containing an image." | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default="text", | |
| help="The column of the dataset containing a caption or a list of captions.", | |
| ) | |
| parser.add_argument( | |
| "--max_train_samples", | |
| type=int, | |
| default=None, | |
| help=( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="sd-model-finetuned", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--random_flip", | |
| action="store_true", | |
| help="whether to randomly flip images horizontally", | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=100) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
| parser.add_argument( | |
| "--non_ema_revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help=( | |
| "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" | |
| " remote repository specified with --pretrained_model_name_or_path." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=( | |
| "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." | |
| " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" | |
| " for more docs" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| # Sanity checks | |
| if args.dataset_name is None and args.train_data_dir is None: | |
| raise ValueError("Need either a dataset name or a training folder.") | |
| # default to using the same revision for the non-ema model if not specified | |
| if args.non_ema_revision is None: | |
| args.non_ema_revision = args.revision | |
| return args | |
| dataset_name_mapping = { | |
| "lambdalabs/pokemon-blip-captions": ("image", "text"), | |
| } | |
| def main(): | |
| args = parse_args() | |
| if args.non_ema_revision is not None: | |
| deprecate( | |
| "non_ema_revision!=None", | |
| "0.15.0", | |
| message=( | |
| "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" | |
| " use `--variant=non_ema` instead." | |
| ), | |
| ) | |
| logging_dir = os.path.join(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| logging_dir=logging_dir, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| datasets.utils.logging.set_verbosity_warning() | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| datasets.utils.logging.set_verbosity_error() | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Load scheduler, tokenizer and models. | |
| noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
| ) | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
| ) | |
| vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) | |
| unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision | |
| ) | |
| # Freeze vae and text_encoder | |
| vae.requires_grad_(False) | |
| text_encoder.requires_grad_(False) | |
| # Create EMA for the unet. | |
| if args.use_ema: | |
| ema_unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision | |
| ) | |
| ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warn( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if args.use_ema: | |
| ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) | |
| for i, model in enumerate(models): | |
| model.save_pretrained(os.path.join(output_dir, "unet")) | |
| # make sure to pop weight so that corresponding model is not saved again | |
| weights.pop() | |
| def load_model_hook(models, input_dir): | |
| if args.use_ema: | |
| load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) | |
| ema_unet.load_state_dict(load_model.state_dict()) | |
| ema_unet.to(accelerator.device) | |
| del load_model | |
| for i in range(len(models)): | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| # load diffusers style into model | |
| load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") | |
| model.register_to_config(**load_model.config) | |
| model.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Initialize the optimizer | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
| ) | |
| optimizer_cls = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_cls = torch.optim.AdamW | |
| optimizer = optimizer_cls( | |
| unet.parameters(), | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # Get the datasets: you can either provide your own training and evaluation files (see below) | |
| # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). | |
| # In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
| # download the dataset. | |
| if args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| dataset = load_dataset( | |
| args.dataset_name, | |
| args.dataset_config_name, | |
| cache_dir=args.cache_dir, | |
| ) | |
| else: | |
| data_files = {} | |
| if args.train_data_dir is not None: | |
| data_files["train"] = os.path.join(args.train_data_dir, "**") | |
| dataset = load_dataset( | |
| "imagefolder", | |
| data_files=data_files, | |
| cache_dir=args.cache_dir, | |
| ) | |
| # See more about loading custom images at | |
| # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| column_names = dataset["train"].column_names | |
| # 6. Get the column names for input/target. | |
| dataset_columns = dataset_name_mapping.get(args.dataset_name, None) | |
| if args.image_column is None: | |
| image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
| else: | |
| image_column = args.image_column | |
| if image_column not in column_names: | |
| raise ValueError( | |
| f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| if args.caption_column is None: | |
| caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
| else: | |
| caption_column = args.caption_column | |
| if caption_column not in column_names: | |
| raise ValueError( | |
| f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| # Preprocessing the datasets. | |
| # We need to tokenize input captions and transform the images. | |
| def tokenize_captions(examples, is_train=True): | |
| captions = [] | |
| for caption in examples[caption_column]: | |
| if isinstance(caption, str): | |
| captions.append(caption) | |
| elif isinstance(caption, (list, np.ndarray)): | |
| # take a random caption if there are multiple | |
| captions.append(random.choice(caption) if is_train else caption[0]) | |
| else: | |
| raise ValueError( | |
| f"Caption column `{caption_column}` should contain either strings or lists of strings." | |
| ) | |
| inputs = tokenizer( | |
| captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
| ) | |
| return inputs.input_ids | |
| # Preprocessing the datasets. | |
| train_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), | |
| transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| def preprocess_train(examples): | |
| images = [image.convert("RGB") for image in examples[image_column]] | |
| examples["pixel_values"] = [train_transforms(image) for image in images] | |
| examples["input_ids"] = tokenize_captions(examples) | |
| return examples | |
| with accelerator.main_process_first(): | |
| if args.max_train_samples is not None: | |
| dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) | |
| # Set the training transforms | |
| train_dataset = dataset["train"].with_transform(preprocess_train) | |
| def collate_fn(examples): | |
| pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
| pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
| input_ids = torch.stack([example["input_ids"] for example in examples]) | |
| return {"pixel_values": pixel_values, "input_ids": input_ids} | |
| # DataLoaders creation: | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| shuffle=True, | |
| collate_fn=collate_fn, | |
| batch_size=args.train_batch_size, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
| num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| if args.use_ema: | |
| ema_unet.to(accelerator.device) | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move text_encode and vae to gpu and cast to weight_dtype | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| accelerator.init_trackers("text2image-fine-tune", config=vars(args)) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| resume_global_step = global_step * args.gradient_accumulation_steps | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) | |
| # Only show the progress bar once on each machine. | |
| progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) | |
| progress_bar.set_description("Steps") | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| unet.train() | |
| train_loss = 0.0 | |
| for step, batch in enumerate(train_dataloader): | |
| # Skip steps until we reach the resumed step | |
| if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
| if step % args.gradient_accumulation_steps == 0: | |
| progress_bar.update(1) | |
| continue | |
| with accelerator.accumulate(unet): | |
| # Convert images to latent space | |
| latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist.sample() | |
| latents = latents * vae.config.scaling_factor | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents) | |
| if args.noise_offset: | |
| # https://www.crosslabs.org//blog/diffusion-with-offset-noise | |
| noise += args.noise_offset * torch.randn( | |
| (latents.shape[0], latents.shape[1], 1, 1), device=latents.device | |
| ) | |
| bsz = latents.shape[0] | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| # Get the text embedding for conditioning | |
| encoder_hidden_states = text_encoder(batch["input_ids"])[0] | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| # Predict the noise residual and compute loss | |
| model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
| # Gather the losses across all processes for logging (if we use distributed training). | |
| avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() | |
| train_loss += avg_loss.item() / args.gradient_accumulation_steps | |
| # Backpropagate | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| if args.use_ema: | |
| ema_unet.step(unet.parameters()) | |
| progress_bar.update(1) | |
| global_step += 1 | |
| accelerator.log({"train_loss": train_loss}, step=global_step) | |
| train_loss = 0.0 | |
| if global_step % args.checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Create the pipeline using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| unet = accelerator.unwrap_model(unet) | |
| if args.use_ema: | |
| ema_unet.copy_to(unet.parameters()) | |
| pipeline = StableDiffusionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| unet=unet, | |
| revision=args.revision, | |
| ) | |
| pipeline.save_pretrained(args.output_dir) | |
| if args.push_to_hub: | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| main() | |