FahadAlam's picture
Update app.py
d4e49b0
raw
history blame
1.06 kB
import gradio as gr
import pandas as pd
from sklearn import datasets
import seaborn as sns
import matplotlib.pyplot as plt
def findCorrelation(dataset, target):
df = pd.read_csv(dataset)
df["target"] = target
d = df.corr()['target'].to_dict()
labels = sorted(d.items(), key=lambda x: x[1], reverse=True)
labels.pop("target")
fig1 = plt.figure()
hm = sns.heatmap(df.corr(), annot = True)
hm.set(title = "Correlation matrix of dataset\n")
fig2 = plt.figure()
# use the function regplot to make a scatterplot
sns.regplot(x=labels.keys()[0], y=df["target"])
fig3 = plt.figure()
# use the function regplot to make a scatterplot
sns.regplot(x=labels.keys()[1], y=df["target"])
fig4 = plt.figure()
# use the function regplot to make a scatterplot
sns.regplot(x=labels.keys()[2], y=df["target"])
return labels, fig1, fig2, fig3, fig4
demo = gr.Interface(fn=findCorrelation, inputs=[gr.File(), 'text'], outputs=[gr.Label(), gr.Plot(), gr.Plot(), gr.Plot(), gr.Plot()], title="Find correlation")
demo.launch()