# AUTOGENERATED! DO NOT EDIT! File to edit: chickli.ipynb. # %% auto 0 __all__ = ['temp', 'learn', 'breeds', 'image', 'label', 'examples', 'intf', 'classify_image'] # %% chickli.ipynb 2 #!pip install fastbook import fastbook from fastbook import * #!pip install fastai from fastai.vision.widgets import * #!pip install gradio import gradio as gr import IPython from IPython.display import display from PIL import Image def search_images(term, max_images=50): print(f"Searching for '{term}'") return search_images_ddg(term, max_images) # %% chickli.ipynb 3 import pathlib temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath #plt = platform.system() #if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('model.pkl') breeds = ('Labrador Retrievers','German Shepherds','Golden Retrievers','French Bulldogs','Bulldogs','Beagles','Poodles','Rottweilers','Chihuahua') def classify_image(img): pred,idx,probs = learn.predict(img) #return dict(zip(breeds, map(float,probs))) return "This is " + pred image = gr.components.Image() label = gr.components.Label() examples = ['dog.jpg','labrador.jpeg','dunno.jpg'] for x in examples: Image.open(x) intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False,share=True)