Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,8 +31,7 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
| 31 |
return doc_splits
|
| 32 |
|
| 33 |
# Create vector database
|
| 34 |
-
def create_db(
|
| 35 |
-
splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
| 36 |
embedding = HuggingFaceEmbeddings()
|
| 37 |
|
| 38 |
if db_type == "ChromaDB":
|
|
@@ -41,7 +40,7 @@ def create_db(list_file_path, chunk_size, chunk_overlap, db_type):
|
|
| 41 |
documents=splits,
|
| 42 |
embedding=embedding,
|
| 43 |
client=new_client,
|
| 44 |
-
collection_name=
|
| 45 |
)
|
| 46 |
elif db_type == "FAISS":
|
| 47 |
vectordb = FAISS.from_documents(
|
|
@@ -57,12 +56,12 @@ def create_db(list_file_path, chunk_size, chunk_overlap, db_type):
|
|
| 57 |
vectordb = Milvus.from_documents(
|
| 58 |
documents=splits,
|
| 59 |
embedding=embedding,
|
| 60 |
-
collection_name=
|
| 61 |
)
|
| 62 |
else:
|
| 63 |
raise ValueError(f"Unsupported vector database type: {db_type}")
|
| 64 |
|
| 65 |
-
return vectordb
|
| 66 |
|
| 67 |
# Initialize langchain LLM chain
|
| 68 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
|
|
@@ -252,13 +251,13 @@ def demo():
|
|
| 252 |
clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
|
| 253 |
|
| 254 |
# Preprocessing events
|
| 255 |
-
db_btn.click(
|
| 256 |
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
| 257 |
outputs=[vector_db, collection_name, db_progress])
|
| 258 |
set_prompt_btn.click(lambda prompt: gr.update(value=prompt),
|
| 259 |
inputs=prompt_input,
|
| 260 |
outputs=initial_prompt)
|
| 261 |
-
qachain_btn.click(
|
| 262 |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
|
| 263 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
| 264 |
inputs=None,
|
|
|
|
| 31 |
return doc_splits
|
| 32 |
|
| 33 |
# Create vector database
|
| 34 |
+
def create_db(splits, collection_name, db_type):
|
|
|
|
| 35 |
embedding = HuggingFaceEmbeddings()
|
| 36 |
|
| 37 |
if db_type == "ChromaDB":
|
|
|
|
| 40 |
documents=splits,
|
| 41 |
embedding=embedding,
|
| 42 |
client=new_client,
|
| 43 |
+
collection_name=collection_name,
|
| 44 |
)
|
| 45 |
elif db_type == "FAISS":
|
| 46 |
vectordb = FAISS.from_documents(
|
|
|
|
| 56 |
vectordb = Milvus.from_documents(
|
| 57 |
documents=splits,
|
| 58 |
embedding=embedding,
|
| 59 |
+
collection_name=collection_name,
|
| 60 |
)
|
| 61 |
else:
|
| 62 |
raise ValueError(f"Unsupported vector database type: {db_type}")
|
| 63 |
|
| 64 |
+
return vectordb
|
| 65 |
|
| 66 |
# Initialize langchain LLM chain
|
| 67 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
|
|
|
|
| 251 |
clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
|
| 252 |
|
| 253 |
# Preprocessing events
|
| 254 |
+
db_btn.click(initialize_database,
|
| 255 |
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
| 256 |
outputs=[vector_db, collection_name, db_progress])
|
| 257 |
set_prompt_btn.click(lambda prompt: gr.update(value=prompt),
|
| 258 |
inputs=prompt_input,
|
| 259 |
outputs=initial_prompt)
|
| 260 |
+
qachain_btn.click(initialize_LLM,
|
| 261 |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
|
| 262 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
| 263 |
inputs=None,
|