File size: 4,372 Bytes
bc7c311
 
 
 
4ebfb1d
a6d4446
 
2b8e0e9
bc7c311
a6d4446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc7c311
 
 
4ebfb1d
bc7c311
 
6826959
bc7c311
ae1712c
 
6826959
bc7c311
 
ca567df
6826959
bc7c311
b966b7e
88dc9b2
4ebfb1d
 
 
 
 
 
 
 
bc7c311
 
 
4ebfb1d
bc7c311
a6d4446
 
 
 
 
3197f16
a6d4446
 
 
0dd7d52
e43af19
4ebfb1d
bc7c311
 
 
 
 
 
 
 
c07e25f
 
bc7c311
a80cfc9
 
 
bc7c311
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from turtle import title
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image  
from dotenv import load_dotenv
import google.generativeai as genai
import os

load_dotenv()
GOOGLE_API_KEY = os.getenv("GOOGLE_API")
genai.configure(api_key=GOOGLE_API_KEY)
model_vision = genai.GenerativeModel('gemini-pro-vision')

def gemini_response_vision(input_texts, image):
    try:
        if input_texts != "":
            response2 = model_vision.generate_content([input_texts, image])
        else:
            response2 = model_vision.generate_content(image)

        return response2.text

    except Exception as e:
        raise e

pipes = {
    "ViT/B-16": pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch16"),
    "ViT/L-14": pipeline("zero-shot-image-classification", model="openai/clip-vit-large-patch14"),
}
inputs = [
    gr.Image(type='pil', 
                    label="Image"),
    gr.Textbox(lines=1, 
                      label="Candidate Labels", placeholder="Add a class label, one by one"),
    gr.Radio(choices=[
                                "ViT/B-16",
                                "ViT/L-14", 
                            ], type="value", label="Model"), 
    gr.Textbox(lines=1, 
                      label="Prompt Template Prompt", 
                      placeholder="Optional prompt template as prefix",
                      value="a photo of a {}"),

    gr.Textbox(lines=1, 
                      label="Prompt Template Prompt", 
                      placeholder="Optional prompt template as suffix",
                      value="in {} {} {} from {} with {}."),
    
    gr.Textbox(lines=1, 
                      label="Prior Domains", placeholder="Add a domain label, one by one"),
]
images="festival.jpg"

def shot(image, labels_text, model_name, hypothesis_template_prefix, hypothesis_template_suffix, domains_text):
    labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")]

    if not domains_text == '':
        domains = [domain.strip(" ") for domain in domains_text.strip(" ").split(",")]
    else:
        img = Image.open(image)
        input_text = "Please describe the image from six dimensions, including weather (clear, sandstorm, foggy, rainy, snowy), angle (front, left, top), time (daytime, night), occlusion (unoccluded, lightly-occluded, partially-occluded, moderately-occluded, heavily-occluded), season (spring-summer, autumn, winter). Each dimension should be described in no more than 4 words and should match the image content. Please try to output from the options in the previous brackets. If there is no suitable result, output N/A."# Please also output a probability of your inference."# If there is no information in a certain dimension, you can directly output no information.
        domains = gemini_response_vision(input_texts=input_text, image=img)
        print(domains)
        
    hypothesis_template = hypothesis_template_prefix + ' ' + hypothesis_template_suffix.format(*domains)
    print(hypothesis_template)
    
    res = pipes[model_name](images=image, 
           candidate_labels=labels,
           hypothesis_template=hypothesis_template)
    return {dic["label"]: dic["score"] for dic in res}

iface = gr.Interface(shot, 
            inputs, 
            "label", 
            examples=[["festival.jpg", "lantern, firecracker, couplet", "ViT/B-16", "a photo of a {}", "in {} {} {} from {} with {}.", "clear, autumn, day, side, light occlusion"],
                     ["car.png", "car, bike, truck", "ViT/B-16", "a photo of a {}", "in {} {} {} from {} with {}.", "clear, winter, day, front, moderate occlusion"]], 
            description="""<p>Chinese CLIP is a contrastive-learning-based vision-language foundation model pretrained on large-scale Chinese data. For more information, please refer to the paper and official github. Also, Chinese CLIP has already been merged into Huggingface Transformers! <br><br>
            Paper: <a href='https://arxiv.org/pdf/2403.02714'>https://arxiv.org/pdf/2403.02714</a> <br>
            To begin with the demo, provide a picture (either upload manually, or select from the given examples) and add class labels one by one. Optionally, you can also add template as a prefix to the class labels. <br>""",
            title="Cross-Domain Recognition")

iface.launch()