FengHou97's picture
Update app.py
6826959 verified
raw
history blame
3.25 kB
from turtle import title
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
pipes = {
"ViT/B-16": pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch16"),
"ViT/L-14": pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch16"),
}
inputs = [
gr.Image(type='pil',
label="Image"),
gr.Textbox(lines=1,
label="Candidate Labels"),
gr.Radio(choices=[
"ViT/B-16",
"ViT/L-14",
"ViT/L-14@336px",
"ViT/H-14",
], type="value", default="ViT/B-16", label="Model"),
gr.Textbox(lines=1,
label="Prompt Template Prompt",
default="a photo of a {}"),
]
images="festival.jpg"
def shot(image, labels_text, model_name, hypothesis_template):
labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")]
res = pipes[model_name](images=image,
candidate_labels=labels,
hypothesis_template=hypothesis_template)
return {dic["label"]: dic["score"] for dic in res}
iface = gr.Interface(shot,
inputs,
"label",
examples=[["festival.jpg", "lantern, firecracker, couplet", "ViT/B-16", "a photo of a {}"]],
# ["cat-dog-music.png", "音乐表演, 体育运动", "ViT/B-16", "a photo of a {}"],
# ["football-match.jpg", "梅西, C罗, 马奎尔", "ViT/B-16", "a photo of a {}"]],
description="""<p>Chinese CLIP is a contrastive-learning-based vision-language foundation model pretrained on large-scale Chinese data. For more information, please refer to the paper and official github. Also, Chinese CLIP has already been merged into Huggingface Transformers! <br><br>
Paper: <a href='https://arxiv.org/abs/2211.01335'>https://arxiv.org/abs/2211.01335</a> <br>
Github: <a href='https://github.com/OFA-Sys/Chinese-CLIP'>https://github.com/OFA-Sys/Chinese-CLIP</a> (Welcome to star! 🔥🔥) <br><br>
To play with this demo, add a picture and a list of labels in Chinese separated by commas. 上传图片,并输入多个分类标签,用英文逗号分隔。可点击页面最下方示例参考。<br>
You can duplicate this space and run it privately: <a href='https://huggingface.co/spaces/OFA-Sys/chinese-clip-zero-shot-image-classification?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>""",
title="Zero-shot Image Classification")
iface.launch()