FengHou97's picture
Update app.py
f2ed16f verified
raw
history blame
2.23 kB
from turtle import title
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
pipes = {
"ViT/B-16": pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch16"),
"ViT/L-14": pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch16"),
}
inputs = [
gr.Image(type='pil',
label="Image"),
gr.Radio(choices=[
"ViT/B-16",
"ViT/L-14",
], type="value", label="Model"),
gr.Textbox(lines=1,
label="Prompt Template Prompt",
placeholder="Optional prompt template as prefix",
value=""),
# gr.Textbox(lines=1,
# label="Prior Domains", placeholder="Add a domain label, one by one",),
gr.Textbox(lines=1,
label="Candidate Labels", placeholder="Add a class label, one by one",),
]
images="festival.jpg"
def shot(image, labels_text, model_name, hypothesis_template):
labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")]
res = pipes[model_name](images=image,
candidate_labels=labels,
hypothesis_template=hypothesis_template)
return {dic["label"]: dic["score"] for dic in res}
iface = gr.Interface(shot,
inputs,
"label",
examples=[["festival.jpg", "ViT/B-16", "a photo of a {}", "lantern, firecracker, couplet"]],
description="""<p>Chinese CLIP is a contrastive-learning-based vision-language foundation model pretrained on large-scale Chinese data. For more information, please refer to the paper and official github. Also, Chinese CLIP has already been merged into Huggingface Transformers! <br><br>
Paper: <a href='https://arxiv.org/pdf/2403.02714'>https://arxiv.org/pdf/2403.02714</a> <br>
To begin with the demo, provide a picture (either upload manually, or select from the given examples) and add class labels one by one. Optionally, you can also add template as a prefix to the class labels. <br>""",
title="Cross-Domain Recognition")
iface.launch()