FengHou97 commited on
Commit
fbb5686
·
verified ·
1 Parent(s): 8df8184

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -6
app.py CHANGED
@@ -7,10 +7,19 @@ from dotenv import load_dotenv
7
  import google.generativeai as genai
8
  import os
9
 
10
- load_dotenv()
11
- GOOGLE_API_KEY = os.getenv("GOOGLE_API")
12
- genai.configure(api_key=GOOGLE_API_KEY)
13
- model_vision = genai.GenerativeModel('gemini-pro-vision')
 
 
 
 
 
 
 
 
 
14
 
15
  def gemini_response_vision(input_texts, image):
16
  try:
@@ -59,8 +68,26 @@ def shot(image, labels_text, model_name, hypothesis_template_prefix, hypothesis_
59
  domains = [domain.strip(" ") for domain in domains_text.strip(" ").split(",")]
60
  else:
61
  #img = Image.open(image)
62
- input_text = "Please describe the image from six dimensions, including weather (clear, sandstorm, foggy, rainy, snowy), angle (front, left, top), time (daytime, night), occlusion (unoccluded, lightly-occluded, partially-occluded, moderately-occluded, heavily-occluded), season (spring-summer, autumn, winter). Each dimension should be described in no more than 4 words and should match the image content. Please try to output from the options in the previous brackets. If there is no suitable result, output N/A."# Please also output a probability of your inference."# If there is no information in a certain dimension, you can directly output no information.
63
- domains = gemini_response_vision(input_texts=input_text, image=image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  print(domains)
65
 
66
  hypothesis_template = hypothesis_template_prefix + ' ' + hypothesis_template_suffix.format(*domains)
 
7
  import google.generativeai as genai
8
  import os
9
 
10
+ from openai import OpenAI
11
+ client = OpenAI(api_key="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")
12
+ import base64
13
+
14
+ # Open the image file and encode it as a base64 string
15
+ def encode_image(image_path):
16
+ with open(image_path, "rb") as image_file:
17
+ return base64.b64encode(image_file.read()).decode("utf-8")
18
+
19
+ # load_dotenv()
20
+ # GOOGLE_API_KEY = os.getenv("GOOGLE_API")
21
+ # genai.configure(api_key=GOOGLE_API_KEY)
22
+ # model_vision = genai.GenerativeModel('gemini-pro-vision')
23
 
24
  def gemini_response_vision(input_texts, image):
25
  try:
 
68
  domains = [domain.strip(" ") for domain in domains_text.strip(" ").split(",")]
69
  else:
70
  #img = Image.open(image)
71
+ #input_text = "Please describe the image from six dimensions, including weather (clear, sandstorm, foggy, rainy, snowy), angle (front, left, top), time (daytime, night), occlusion (unoccluded, lightly-occluded, partially-occluded, moderately-occluded, heavily-occluded), season (spring-summer, autumn, winter). Each dimension should be described in no more than 4 words and should match the image content. Please try to output from the options in the previous brackets. If there is no suitable result, output N/A."# Please also output a probability of your inference."# If there is no information in a certain dimension, you can directly output no information.
72
+ #domains = gemini_response_vision(input_texts=input_text, image=image)
73
+ #IMAGE_PATH = './reasoning_xy.jpg'
74
+ base64_image = encode_image(image)
75
+ prompt = "Please describe the image from six dimensions, including weather (clear, sandstorm, foggy, rainy, snowy), angle (front, left, top), time (daytime, night), occlusion (unoccluded, lightly-occluded, partially-occluded, moderately-occluded, heavily-occluded), season (spring-summer, autumn, winter). Each dimension should be described in no more than 4 words and should match the image content. Please try to output from the options in the previous brackets. If there is no suitable result, output N/A."# Please also output a probability of your inference."# If there is no information in a certain dimension, you can directly output no information."
76
+
77
+ response = client.chat.completions.create(
78
+ model="o1-preview",
79
+ messages=[
80
+ # {"role": "system", "content": "You are a helpful assistant that responds in Markdown. Help me with my math homework!"},
81
+ {"role": "user", "content": [
82
+ {"type": "text", "text": prompt},
83
+ {"type": "image_url", "image_url": {
84
+ "url": f"data:image/png;base64,{base64_image}"}
85
+ }
86
+ ]}
87
+ ],
88
+ temperature=0.0,
89
+ )
90
+ domains = response.choices[0].message.content
91
  print(domains)
92
 
93
  hypothesis_template = hypothesis_template_prefix + ' ' + hypothesis_template_suffix.format(*domains)