from turtle import title import gradio as gr from transformers import pipeline import numpy as np from PIL import Image pipes = { "ViT/B-16": pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch16"), "ViT/L-14": pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch16"), } inputs = [ gr.inputs.Image(type='pil', label="Image"), gr.inputs.Textbox(lines=1, label="Candidate Labels"), gr.inputs.Radio(choices=[ "ViT/B-16", "ViT/L-14", "ViT/L-14@336px", "ViT/H-14", ], type="value", default="ViT/B-16", label="Model"), gr.inputs.Textbox(lines=1, label="Prompt Template Prompt", default="a photo of a {}"), ] images="festival.jpg" def shot(image, labels_text, model_name, hypothesis_template): labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")] res = pipes[model_name](images=image, candidate_labels=labels, hypothesis_template=hypothesis_template) return {dic["label"]: dic["score"] for dic in res} iface = gr.Interface(shot, inputs, "label", examples=[["festival.jpg", "lantern, firecracker, couplet", "ViT/B-16", "a photo of a {}"]], # ["cat-dog-music.png", "音乐表演, 体育运动", "ViT/B-16", "a photo of a {}"], # ["football-match.jpg", "梅西, C罗, 马奎尔", "ViT/B-16", "a photo of a {}"]], description="""
Chinese CLIP is a contrastive-learning-based vision-language foundation model pretrained on large-scale Chinese data. For more information, please refer to the paper and official github. Also, Chinese CLIP has already been merged into Huggingface Transformers!
Paper: https://arxiv.org/abs/2211.01335
Github: https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! 🔥🔥)
To play with this demo, add a picture and a list of labels in Chinese separated by commas. 上传图片,并输入多个分类标签,用英文逗号分隔。可点击页面最下方示例参考。
You can duplicate this space and run it privately: