Spaces:
Runtime error
Runtime error
init commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- NaRCan_model.py +221 -0
- app.py +362 -0
- canonical/bear.png +0 -0
- canonical/boat.png +0 -0
- canonical/cactus.png +0 -0
- canonical/corgi.png +0 -0
- canonical/gold-fish.png +0 -0
- canonical/koolshooters.png +0 -0
- canonical/overlook-the-ocean.png +0 -0
- canonical/rotate.png +0 -0
- canonical/shark-ocean.png +0 -0
- canonical/surf.png +0 -0
- canonical/woman-drink.png +0 -0
- canonical/yacht.png +0 -0
- examples/bear.mp4 +0 -0
- examples/boat.mp4 +0 -0
- examples/cactus.mp4 +0 -0
- examples/corgi.mp4 +0 -0
- examples/gold-fish.mp4 +0 -0
- examples/koolshooters.mp4 +0 -0
- examples/overlook-the-ocean.mp4 +0 -0
- examples/rotate.mp4 +0 -0
- examples/shark-ocean.mp4 +0 -0
- examples/surf.mp4 +0 -0
- examples/woman-drink.mp4 +0 -0
- examples/yacht.mp4 +0 -0
- examples_frames/bear/00040.jpg +0 -0
- examples_frames/bear/00041.jpg +0 -0
- examples_frames/bear/00042.jpg +0 -0
- examples_frames/bear/00043.jpg +0 -0
- examples_frames/bear/00044.jpg +0 -0
- examples_frames/bear/00045.jpg +0 -0
- examples_frames/bear/00046.jpg +0 -0
- examples_frames/bear/00047.jpg +0 -0
- examples_frames/bear/00048.jpg +0 -0
- examples_frames/bear/00049.jpg +0 -0
- examples_frames/bear/00050.jpg +0 -0
- examples_frames/bear/00051.jpg +0 -0
- examples_frames/bear/00052.jpg +0 -0
- examples_frames/bear/00053.jpg +0 -0
- examples_frames/bear/00054.jpg +0 -0
- examples_frames/bear/00055.jpg +0 -0
- examples_frames/bear/00056.jpg +0 -0
- examples_frames/bear/00057.jpg +0 -0
- examples_frames/bear/00058.jpg +0 -0
- examples_frames/bear/00059.jpg +0 -0
- examples_frames/bear/00060.jpg +0 -0
- examples_frames/bear/00061.jpg +0 -0
- examples_frames/bear/00062.jpg +0 -0
- examples_frames/bear/00063.jpg +0 -0
NaRCan_model.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
import math
|
| 5 |
+
# import tinycudann as tcnn
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SineLayer(nn.Module):
|
| 9 |
+
# See paper sec. 3.2, final paragraph, and supplement Sec. 1.5 for discussion of omega_0.
|
| 10 |
+
|
| 11 |
+
# If is_first=True, omega_0 is a frequency factor which simply multiplies the activations before the
|
| 12 |
+
# nonlinearity. Different signals may require different omega_0 in the first layer - this is a
|
| 13 |
+
# hyperparameter.
|
| 14 |
+
|
| 15 |
+
# If is_first=False, then the weights will be divided by omega_0 so as to keep the magnitude of
|
| 16 |
+
# activations constant, but boost gradients to the weight matrix (see supplement Sec. 1.5)
|
| 17 |
+
|
| 18 |
+
def __init__(self, in_features, out_features, bias=True,
|
| 19 |
+
is_first=False, omega_0=30):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.omega_0 = omega_0
|
| 22 |
+
self.is_first = is_first
|
| 23 |
+
|
| 24 |
+
self.in_features = in_features
|
| 25 |
+
self.linear = nn.Linear(in_features, out_features, bias=bias)
|
| 26 |
+
|
| 27 |
+
self.init_weights()
|
| 28 |
+
|
| 29 |
+
def init_weights(self):
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
if self.is_first:
|
| 32 |
+
self.linear.weight.uniform_(-1 / self.in_features,
|
| 33 |
+
1 / self.in_features)
|
| 34 |
+
else:
|
| 35 |
+
self.linear.weight.uniform_(-np.sqrt(6 / self.in_features) / self.omega_0,
|
| 36 |
+
np.sqrt(6 / self.in_features) / self.omega_0)
|
| 37 |
+
|
| 38 |
+
def forward(self, input):
|
| 39 |
+
return torch.sin(self.omega_0 * self.linear(input))
|
| 40 |
+
|
| 41 |
+
def forward_with_intermediate(self, input):
|
| 42 |
+
# For visualization of activation distributions
|
| 43 |
+
intermediate = self.omega_0 * self.linear(input)
|
| 44 |
+
return torch.sin(intermediate), intermediate
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class Siren(nn.Module):
|
| 48 |
+
def __init__(self, in_features, hidden_features, hidden_layers, out_features, outermost_linear=False,
|
| 49 |
+
first_omega_0=30, hidden_omega_0=30.):
|
| 50 |
+
super().__init__()
|
| 51 |
+
|
| 52 |
+
self.net = []
|
| 53 |
+
self.net.append(SineLayer(in_features, hidden_features,
|
| 54 |
+
is_first=True, omega_0=first_omega_0))
|
| 55 |
+
|
| 56 |
+
for i in range(hidden_layers):
|
| 57 |
+
self.net.append(SineLayer(hidden_features, hidden_features,
|
| 58 |
+
is_first=False, omega_0=hidden_omega_0))
|
| 59 |
+
|
| 60 |
+
if outermost_linear:
|
| 61 |
+
final_linear = nn.Linear(hidden_features, out_features)
|
| 62 |
+
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
final_linear.weight.uniform_(-np.sqrt(6 / hidden_features) / hidden_omega_0,
|
| 65 |
+
np.sqrt(6 / hidden_features) / hidden_omega_0)
|
| 66 |
+
|
| 67 |
+
self.net.append(final_linear)
|
| 68 |
+
else:
|
| 69 |
+
self.net.append(SineLayer(hidden_features, out_features,
|
| 70 |
+
is_first=False, omega_0=hidden_omega_0))
|
| 71 |
+
|
| 72 |
+
self.net = nn.Sequential(*self.net)
|
| 73 |
+
|
| 74 |
+
def forward(self, coords):
|
| 75 |
+
output = self.net(coords)
|
| 76 |
+
return output
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class Homography(nn.Module):
|
| 80 |
+
def __init__(self, in_features=1, hidden_features=256, hidden_layers=1):
|
| 81 |
+
super().__init__()
|
| 82 |
+
out_features = 8
|
| 83 |
+
|
| 84 |
+
self.net = []
|
| 85 |
+
self.net.append(nn.Linear(in_features, hidden_features))
|
| 86 |
+
self.net.append(nn.ReLU(inplace=True))
|
| 87 |
+
for i in range(hidden_layers):
|
| 88 |
+
self.net.append(nn.Linear(hidden_features, hidden_features))
|
| 89 |
+
self.net.append(nn.ReLU(inplace=True))
|
| 90 |
+
self.net.append(nn.Linear(hidden_features, out_features))
|
| 91 |
+
self.net = nn.Sequential(*self.net)
|
| 92 |
+
|
| 93 |
+
self.init_weights()
|
| 94 |
+
|
| 95 |
+
def init_weights(self):
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
self.net[-1].bias.copy_(torch.Tensor([1., 0., 0., 0., 1., 0., 0., 0.]))
|
| 98 |
+
|
| 99 |
+
def forward(self, coords):
|
| 100 |
+
output = self.net(coords)
|
| 101 |
+
return output
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class Annealed(nn.Module):
|
| 105 |
+
def __init__(self, in_channels, annealed_step, annealed_begin_step=0, identity=True):
|
| 106 |
+
"""
|
| 107 |
+
Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...)
|
| 108 |
+
in_channels: number of input channels (3 for both xyz and direction)
|
| 109 |
+
"""
|
| 110 |
+
super(Annealed, self).__init__()
|
| 111 |
+
self.N_freqs = 16
|
| 112 |
+
self.in_channels = in_channels
|
| 113 |
+
self.annealed = True
|
| 114 |
+
self.annealed_step = annealed_step
|
| 115 |
+
self.annealed_begin_step = annealed_begin_step
|
| 116 |
+
|
| 117 |
+
self.index = torch.linspace(0, self.N_freqs - 1, self.N_freqs)
|
| 118 |
+
self.identity = identity
|
| 119 |
+
|
| 120 |
+
self.index_2 = self.index.view(-1, 1).repeat(1, 2).view(-1)
|
| 121 |
+
|
| 122 |
+
def forward(self, x_embed, step):
|
| 123 |
+
"""
|
| 124 |
+
Embeds x to (x, sin(2^k x), cos(2^k x), ...)
|
| 125 |
+
Different from the paper, "x" is also in the output
|
| 126 |
+
See https://github.com/bmild/nerf/issues/12
|
| 127 |
+
|
| 128 |
+
Inputs:
|
| 129 |
+
x: (B, self.in_channels)
|
| 130 |
+
|
| 131 |
+
Outputs:
|
| 132 |
+
out: (B, self.out_channels)
|
| 133 |
+
"""
|
| 134 |
+
use_PE = False
|
| 135 |
+
|
| 136 |
+
if self.annealed_begin_step == 0:
|
| 137 |
+
# calculate the w for each freq bands
|
| 138 |
+
alpha = self.N_freqs * step / float(self.annealed_step)
|
| 139 |
+
else:
|
| 140 |
+
if step <= self.annealed_begin_step:
|
| 141 |
+
alpha = 0
|
| 142 |
+
else:
|
| 143 |
+
alpha = (self.N_freqs) * (step - self.annealed_begin_step) / float(
|
| 144 |
+
self.annealed_step)
|
| 145 |
+
|
| 146 |
+
w = (1 - torch.cos(math.pi * torch.clamp(alpha * torch.ones_like(self.index_2) - self.index_2, 0, 1))) / 2
|
| 147 |
+
|
| 148 |
+
if use_PE:
|
| 149 |
+
w[16:] = w[:16]
|
| 150 |
+
|
| 151 |
+
out = x_embed * w.to(x_embed.device)
|
| 152 |
+
|
| 153 |
+
return out
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class BARF_PE(nn.Module):
|
| 157 |
+
def __init__(self, config):
|
| 158 |
+
super().__init__()
|
| 159 |
+
self.encoder = tcnn.Encoding(n_input_dims=2,
|
| 160 |
+
encoding_config=config["positional encoding"])
|
| 161 |
+
self.decoder = tcnn.Network(n_input_dims=self.encoder.n_output_dims +
|
| 162 |
+
2,
|
| 163 |
+
n_output_dims=3,
|
| 164 |
+
network_config=config["BARF network"])
|
| 165 |
+
|
| 166 |
+
def forward(self, x, step=0, aneal_func=None):
|
| 167 |
+
input = x
|
| 168 |
+
input = self.encoder(input)
|
| 169 |
+
if aneal_func is not None:
|
| 170 |
+
input = torch.cat([x, aneal_func(input,step)], dim=-1)
|
| 171 |
+
else:
|
| 172 |
+
input = torch.cat([x, input], dim=-1)
|
| 173 |
+
|
| 174 |
+
weight = torch.ones(input.shape[-1], device=input.device).cuda()
|
| 175 |
+
x = self.decoder(weight * input)
|
| 176 |
+
return x
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class Deform_Hash3d(nn.Module):
|
| 180 |
+
def __init__(self, config):
|
| 181 |
+
super().__init__()
|
| 182 |
+
self.encoder = tcnn.Encoding(n_input_dims=3,
|
| 183 |
+
encoding_config=config["encoding_deform3d"])
|
| 184 |
+
self.decoder = nn.Sequential(nn.Linear(self.encoder.n_output_dims + 3, 256),
|
| 185 |
+
nn.ReLU(),
|
| 186 |
+
nn.Linear(256, 256),
|
| 187 |
+
nn.ReLU(),
|
| 188 |
+
nn.Linear(256, 256),
|
| 189 |
+
nn.ReLU(),
|
| 190 |
+
nn.Linear(256, 256),
|
| 191 |
+
nn.ReLU(),
|
| 192 |
+
nn.Linear(256, 256),
|
| 193 |
+
nn.ReLU(),
|
| 194 |
+
nn.Linear(256, 256),
|
| 195 |
+
nn.ReLU(),
|
| 196 |
+
nn.Linear(256, 2)
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
def forward(self, x, step=0, aneal_func=None):
|
| 200 |
+
input = x
|
| 201 |
+
input = self.encoder(input)
|
| 202 |
+
if aneal_func is not None:
|
| 203 |
+
input = torch.cat([x, aneal_func(input,step)], dim=-1)
|
| 204 |
+
else:
|
| 205 |
+
input = torch.cat([x, input], dim=-1)
|
| 206 |
+
|
| 207 |
+
weight = torch.ones(input.shape[-1], device=input.device).cuda()
|
| 208 |
+
x = self.decoder(weight * input) / 5
|
| 209 |
+
|
| 210 |
+
return x
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class Deform_Hash3d_Warp(nn.Module):
|
| 214 |
+
def __init__(self, config):
|
| 215 |
+
super().__init__()
|
| 216 |
+
self.Deform_Hash3d = Deform_Hash3d(config)
|
| 217 |
+
|
| 218 |
+
def forward(self, xyt_norm, step=0,aneal_func=None):
|
| 219 |
+
x = self.Deform_Hash3d(xyt_norm,step=step, aneal_func=aneal_func)
|
| 220 |
+
|
| 221 |
+
return x
|
app.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import cv2
|
| 5 |
+
import os
|
| 6 |
+
import imageio
|
| 7 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 8 |
+
from controlnet_aux import LineartDetector
|
| 9 |
+
from functools import partial
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from torch.utils.data import DataLoader, Dataset
|
| 12 |
+
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
|
| 13 |
+
|
| 14 |
+
from NaRCan_model import Homography, Siren
|
| 15 |
+
from util import get_mgrid, apply_homography, jacobian, VideoFitting, TestVideoFitting
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_example():
|
| 20 |
+
case = [
|
| 21 |
+
[
|
| 22 |
+
'examples/bear.mp4',
|
| 23 |
+
],
|
| 24 |
+
[
|
| 25 |
+
'examples/boat.mp4',
|
| 26 |
+
],
|
| 27 |
+
[
|
| 28 |
+
'examples/woman-drink.mp4',
|
| 29 |
+
],
|
| 30 |
+
[
|
| 31 |
+
'examples/corgi.mp4',
|
| 32 |
+
],
|
| 33 |
+
[
|
| 34 |
+
'examples/yacht.mp4',
|
| 35 |
+
],
|
| 36 |
+
[
|
| 37 |
+
'examples/koolshooters.mp4',
|
| 38 |
+
],
|
| 39 |
+
[
|
| 40 |
+
'examples/overlook-the-ocean.mp4',
|
| 41 |
+
],
|
| 42 |
+
[
|
| 43 |
+
'examples/rotate.mp4',
|
| 44 |
+
],
|
| 45 |
+
[
|
| 46 |
+
'examples/shark-ocean.mp4',
|
| 47 |
+
],
|
| 48 |
+
[
|
| 49 |
+
'examples/surf.mp4',
|
| 50 |
+
],
|
| 51 |
+
[
|
| 52 |
+
'examples/cactus.mp4',
|
| 53 |
+
],
|
| 54 |
+
[
|
| 55 |
+
'examples/gold-fish.mp4',
|
| 56 |
+
]
|
| 57 |
+
]
|
| 58 |
+
return case
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def set_default_prompt(video_name):
|
| 62 |
+
video_to_prompt = {
|
| 63 |
+
'bear.mp4': 'bear, Van Gogh Style',
|
| 64 |
+
'boat.mp4': 'a burning boat sails on lava',
|
| 65 |
+
'cactus.mp4': 'cactus, made of paper',
|
| 66 |
+
'corgi.mp4': 'a hellhound',
|
| 67 |
+
'gold-fish.mp4': 'Goldfish in the Milky Way',
|
| 68 |
+
'koolshooters.mp4': 'Avatar',
|
| 69 |
+
'overlook-the-ocean.mp4': 'ocean, pixel style',
|
| 70 |
+
'rotate.mp4': 'turbine engine',
|
| 71 |
+
'shark-ocean.mp4': 'A sleek shark, cartoon style',
|
| 72 |
+
'surf.mp4': 'Sailing, The background is a large white cloud, sketch style',
|
| 73 |
+
'woman-drink.mp4': 'a drinking zombie',
|
| 74 |
+
'yacht.mp4': 'yacht, cyberpunk style',
|
| 75 |
+
}
|
| 76 |
+
return video_to_prompt.get(video_name, '')
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def update_prompt(input_video):
|
| 80 |
+
video_name = input_video.split('/')[-1]
|
| 81 |
+
return set_default_prompt(video_name)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# Map videos to corresponding images
|
| 85 |
+
video_to_image = {
|
| 86 |
+
'bear.mp4': ['canonical/bear.png', 'pth_file/bear', 'examples_frames/bear'],
|
| 87 |
+
'boat.mp4': ['canonical/boat.png', 'pth_file/boat', 'examples_frames/boat'],
|
| 88 |
+
'cactus.mp4': ['canonical/cactus.png', 'pth_file/cactus', 'examples_frames/cactus'],
|
| 89 |
+
'corgi.mp4': ['canonical/corgi.png', 'pth_file/corgi', 'examples_frames/corgi'],
|
| 90 |
+
'gold-fish.mp4': ['canonical/gold-fish.png', 'pth_file/gold-fish', 'examples_frames/gold-fish'],
|
| 91 |
+
'koolshooters.mp4': ['canonical/koolshooters.png', 'pth_file/koolshooters', 'examples_frames/koolshooters'],
|
| 92 |
+
'overlook-the-ocean.mp4': ['canonical/overlook-the-ocean.png', 'pth_file/overlook-the-ocean', 'examples_frames/overlook-the-ocean'],
|
| 93 |
+
'rotate.mp4': ['canonical/rotate.png', 'pth_file/rotate', 'examples_frames/rotate'],
|
| 94 |
+
'shark-ocean.mp4': ['canonical/shark-ocean.png', 'pth_file/shark-ocean', 'examples_frames/shark-ocean'],
|
| 95 |
+
'surf.mp4': ['canonical/surf.png', 'pth_file/surf', 'examples_frames/surf'],
|
| 96 |
+
'woman-drink.mp4': ['canonical/woman-drink.png', 'pth_file/woman-drink', 'examples_frames/woman-drink'],
|
| 97 |
+
'yacht.mp4': ['canonical/yacht.png', 'pth_file/yacht', 'examples_frames/yacht'],
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def images_to_video(image_list, output_path, fps=10):
|
| 102 |
+
# Convert PIL Images to numpy arrays
|
| 103 |
+
frames = [np.array(img).astype(np.uint8) for img in image_list]
|
| 104 |
+
frames = frames[:20]
|
| 105 |
+
|
| 106 |
+
# Create video writer
|
| 107 |
+
writer = imageio.get_writer(output_path, fps=fps, codec='libx264')
|
| 108 |
+
|
| 109 |
+
for frame in frames:
|
| 110 |
+
writer.append_data(frame)
|
| 111 |
+
|
| 112 |
+
writer.close()
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def NaRCan_make_video(edit_canonical, pth_path, frames_path):
|
| 116 |
+
# load NaRCan model
|
| 117 |
+
checkpoint_g_old = torch.load(os.path.join(pth_path, "homography_g.pth"))
|
| 118 |
+
checkpoint_g = torch.load(os.path.join(pth_path, "mlp_g.pth"))
|
| 119 |
+
g_old = Homography(hidden_features=256, hidden_layers=2).cuda()
|
| 120 |
+
g = Siren(in_features=3, out_features=2, hidden_features=256,
|
| 121 |
+
hidden_layers=5, outermost_linear=True).cuda()
|
| 122 |
+
|
| 123 |
+
g_old.load_state_dict(checkpoint_g_old)
|
| 124 |
+
g.load_state_dict(checkpoint_g)
|
| 125 |
+
|
| 126 |
+
g_old.eval()
|
| 127 |
+
g.eval()
|
| 128 |
+
|
| 129 |
+
transform = Compose([
|
| 130 |
+
Resize(512),
|
| 131 |
+
ToTensor(),
|
| 132 |
+
Normalize(torch.Tensor([0.5, 0.5, 0.5]), torch.Tensor([0.5, 0.5, 0.5]))
|
| 133 |
+
])
|
| 134 |
+
v = TestVideoFitting(frames_path, transform)
|
| 135 |
+
videoloader = DataLoader(v, batch_size=1, pin_memory=True, num_workers=0)
|
| 136 |
+
|
| 137 |
+
model_input, ground_truth = next(iter(videoloader))
|
| 138 |
+
model_input, ground_truth = model_input[0].cuda(), ground_truth[0].cuda()
|
| 139 |
+
|
| 140 |
+
myoutput = None
|
| 141 |
+
data_len = len(os.listdir(frames_path))
|
| 142 |
+
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
batch_size = (v.H * v.W)
|
| 145 |
+
for step in range(data_len):
|
| 146 |
+
start = (step * batch_size) % len(model_input)
|
| 147 |
+
end = min(start + batch_size, len(model_input))
|
| 148 |
+
|
| 149 |
+
# get the deformation
|
| 150 |
+
xy, t = model_input[start:end, :-1], model_input[start:end, [-1]]
|
| 151 |
+
xyt = model_input[start:end]
|
| 152 |
+
h_old = apply_homography(xy, g_old(t))
|
| 153 |
+
h = g(xyt)
|
| 154 |
+
xy_ = h_old + h
|
| 155 |
+
|
| 156 |
+
# use canonical to reconstruct
|
| 157 |
+
w, h = v.W, v.H
|
| 158 |
+
canonical_img = np.array(edit_canonical.convert('RGB'))
|
| 159 |
+
canonical_img = torch.from_numpy(canonical_img).float().cuda()
|
| 160 |
+
h_c, w_c = canonical_img.shape[:2]
|
| 161 |
+
grid_new = xy_.clone()
|
| 162 |
+
grid_new[..., 1] = xy_[..., 0] / 1.5
|
| 163 |
+
grid_new[..., 0] = xy_[..., 1] / 2.0
|
| 164 |
+
|
| 165 |
+
if len(canonical_img.shape) == 3:
|
| 166 |
+
canonical_img = canonical_img.unsqueeze(0)
|
| 167 |
+
results = torch.nn.functional.grid_sample(
|
| 168 |
+
canonical_img.permute(0, 3, 1, 2),
|
| 169 |
+
grid_new.unsqueeze(1).unsqueeze(0),
|
| 170 |
+
mode='bilinear',
|
| 171 |
+
padding_mode='border')
|
| 172 |
+
o = results.squeeze().permute(1,0)
|
| 173 |
+
|
| 174 |
+
if step == 0:
|
| 175 |
+
myoutput = o
|
| 176 |
+
|
| 177 |
+
else:
|
| 178 |
+
myoutput = torch.cat([myoutput, o])
|
| 179 |
+
|
| 180 |
+
myoutput = myoutput.reshape(512, 512, data_len, 3).permute(2, 0, 1, 3).clone().detach().cpu().numpy().astype(np.float32)
|
| 181 |
+
# myoutput = np.clip(myoutput, -1, 1) * 0.5 + 0.5
|
| 182 |
+
|
| 183 |
+
for i in range(len(myoutput)):
|
| 184 |
+
myoutput[i] = Image.fromarray(np.uint8(myoutput[i])).resize((512, 512)) #854, 480
|
| 185 |
+
|
| 186 |
+
edit_video_path = f'NaRCan_fps_10.mp4'
|
| 187 |
+
images_to_video(myoutput, edit_video_path)
|
| 188 |
+
|
| 189 |
+
return edit_video_path
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def edit_with_pnp(input_video, prompt, num_steps, guidance_scale, seed, n_prompt, control_type="Lineart"):
|
| 193 |
+
video_name = input_video.split('/')[-1]
|
| 194 |
+
if video_name in video_to_image:
|
| 195 |
+
image_path = video_to_image[video_name][0]
|
| 196 |
+
pth_path = video_to_image[video_name][1]
|
| 197 |
+
frames_path = video_to_image[video_name][2]
|
| 198 |
+
else:
|
| 199 |
+
return None
|
| 200 |
+
|
| 201 |
+
if control_type == "Lineart":
|
| 202 |
+
# Load the control net model for lineart
|
| 203 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_lineart", torch_dtype=torch.float16)
|
| 204 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 205 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
| 206 |
+
)
|
| 207 |
+
pipe.to("cuda")
|
| 208 |
+
# lineart
|
| 209 |
+
processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
| 210 |
+
processor_partial = partial(processor, coarse=False)
|
| 211 |
+
size_ = 768
|
| 212 |
+
canonical_image = Image.open(image_path)
|
| 213 |
+
ori_size = canonical_image.size
|
| 214 |
+
image = processor_partial(canonical_image.resize((size_, size_)), detect_resolution=size_, image_resolution=size_)
|
| 215 |
+
image = image.resize(ori_size, resample=Image.BILINEAR)
|
| 216 |
+
|
| 217 |
+
generator = torch.manual_seed(seed) if seed != -1 else None
|
| 218 |
+
output_images = pipe(
|
| 219 |
+
prompt=prompt,
|
| 220 |
+
image=image,
|
| 221 |
+
num_inference_steps=num_steps,
|
| 222 |
+
guidance_scale=guidance_scale,
|
| 223 |
+
negative_prompt=n_prompt,
|
| 224 |
+
generator=generator
|
| 225 |
+
).images
|
| 226 |
+
# output_images[0] = output_images[0].resize(ori_size, resample=Image.BILINEAR)
|
| 227 |
+
|
| 228 |
+
else:
|
| 229 |
+
# Load the control net model for canny
|
| 230 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16)
|
| 231 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 232 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
| 233 |
+
)
|
| 234 |
+
pipe.to("cuda")
|
| 235 |
+
# canny
|
| 236 |
+
canonical_image = cv2.imread(image_path)
|
| 237 |
+
canonical_image = cv2.cvtColor(canonical_image, cv2.COLOR_BGR2RGB)
|
| 238 |
+
image = cv2.cvtColor(canonical_image, cv2.COLOR_RGB2GRAY)
|
| 239 |
+
image = cv2.Canny(image, 100, 200)
|
| 240 |
+
image = image[:, :, None]
|
| 241 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 242 |
+
image = Image.fromarray(image)
|
| 243 |
+
|
| 244 |
+
generator = torch.manual_seed(seed) if seed != -1 else None
|
| 245 |
+
output_images = pipe(
|
| 246 |
+
prompt=prompt,
|
| 247 |
+
image=image,
|
| 248 |
+
num_inference_steps=num_steps,
|
| 249 |
+
guidance_scale=guidance_scale,
|
| 250 |
+
negative_prompt=n_prompt,
|
| 251 |
+
generator=generator
|
| 252 |
+
).images
|
| 253 |
+
|
| 254 |
+
edit_video_path = NaRCan_make_video(output_images[0], pth_path, frames_path)
|
| 255 |
+
|
| 256 |
+
# Here we return the first output image as the result
|
| 257 |
+
return edit_video_path
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
########
|
| 261 |
+
# demo #
|
| 262 |
+
########
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
intro = """
|
| 266 |
+
<div style="text-align:center">
|
| 267 |
+
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
|
| 268 |
+
NaRCan - <small>Natural Refined Canonical Image</small>
|
| 269 |
+
</h1>
|
| 270 |
+
<span>[<a target="_blank" href="https://koi953215.github.io/NaRCan_page/">Project page</a>], [<a target="_blank" href="https://huggingface.co/papers/2406.06523">Paper</a>]</span>
|
| 271 |
+
<div style="display:flex; justify-content: center;margin-top: 0.5em">Each edit takes ~10 sec </div>
|
| 272 |
+
</div>
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
with gr.Blocks(css="style.css") as demo:
|
| 278 |
+
|
| 279 |
+
gr.HTML(intro)
|
| 280 |
+
frames = gr.State()
|
| 281 |
+
inverted_latents = gr.State()
|
| 282 |
+
latents = gr.State()
|
| 283 |
+
zs = gr.State()
|
| 284 |
+
do_inversion = gr.State(value=True)
|
| 285 |
+
|
| 286 |
+
with gr.Row():
|
| 287 |
+
input_video = gr.Video(label="Input Video", interactive=False, elem_id="input_video", value='examples/bear.mp4')
|
| 288 |
+
output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video")
|
| 289 |
+
input_video.style(height=365, width=365)
|
| 290 |
+
output_video.style(height=365, width=365)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
with gr.Row():
|
| 294 |
+
prompt = gr.Textbox(
|
| 295 |
+
label="Describe your edited video",
|
| 296 |
+
max_lines=1,
|
| 297 |
+
value="bear, Van Gogh Style"
|
| 298 |
+
# placeholder="bear, Van Gogh Style"
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
with gr.Row():
|
| 303 |
+
run_button = gr.Button("Edit your video!", visible=True)
|
| 304 |
+
|
| 305 |
+
max_images = 12
|
| 306 |
+
default_num_images = 3
|
| 307 |
+
with gr.Accordion('Advanced options', open=False):
|
| 308 |
+
control_type = gr.Dropdown(
|
| 309 |
+
["Canny", "Lineart"],
|
| 310 |
+
label="Control Type",
|
| 311 |
+
info="Canny or Lineart",
|
| 312 |
+
value="Lineart"
|
| 313 |
+
)
|
| 314 |
+
num_steps = gr.Slider(label='Steps',
|
| 315 |
+
minimum=1,
|
| 316 |
+
maximum=100,
|
| 317 |
+
value=20,
|
| 318 |
+
step=1)
|
| 319 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 320 |
+
minimum=0.1,
|
| 321 |
+
maximum=30.0,
|
| 322 |
+
value=9.0,
|
| 323 |
+
step=0.1)
|
| 324 |
+
seed = gr.Slider(label='Seed',
|
| 325 |
+
minimum=-1,
|
| 326 |
+
maximum=2147483647,
|
| 327 |
+
step=1,
|
| 328 |
+
randomize=True)
|
| 329 |
+
n_prompt = gr.Textbox(
|
| 330 |
+
label='Negative Prompt',
|
| 331 |
+
value=""
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
input_video.change(
|
| 335 |
+
fn = update_prompt,
|
| 336 |
+
inputs = [input_video],
|
| 337 |
+
outputs = [prompt],
|
| 338 |
+
queue = False)
|
| 339 |
+
|
| 340 |
+
run_button.click(fn = edit_with_pnp,
|
| 341 |
+
inputs = [input_video,
|
| 342 |
+
prompt,
|
| 343 |
+
num_steps,
|
| 344 |
+
guidance_scale,
|
| 345 |
+
seed,
|
| 346 |
+
n_prompt,
|
| 347 |
+
control_type,
|
| 348 |
+
],
|
| 349 |
+
outputs = [output_video]
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
gr.Examples(
|
| 353 |
+
examples=get_example(),
|
| 354 |
+
label='Examples',
|
| 355 |
+
inputs=[input_video],
|
| 356 |
+
outputs=[output_video],
|
| 357 |
+
examples_per_page=8
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
demo.queue()
|
| 361 |
+
|
| 362 |
+
demo.launch(share=True)
|
canonical/bear.png
ADDED
|
canonical/boat.png
ADDED
|
canonical/cactus.png
ADDED
|
canonical/corgi.png
ADDED
|
canonical/gold-fish.png
ADDED
|
canonical/koolshooters.png
ADDED
|
canonical/overlook-the-ocean.png
ADDED
|
canonical/rotate.png
ADDED
|
canonical/shark-ocean.png
ADDED
|
canonical/surf.png
ADDED
|
canonical/woman-drink.png
ADDED
|
canonical/yacht.png
ADDED
|
examples/bear.mp4
ADDED
|
Binary file (830 kB). View file
|
|
|
examples/boat.mp4
ADDED
|
Binary file (520 kB). View file
|
|
|
examples/cactus.mp4
ADDED
|
Binary file (293 kB). View file
|
|
|
examples/corgi.mp4
ADDED
|
Binary file (170 kB). View file
|
|
|
examples/gold-fish.mp4
ADDED
|
Binary file (402 kB). View file
|
|
|
examples/koolshooters.mp4
ADDED
|
Binary file (375 kB). View file
|
|
|
examples/overlook-the-ocean.mp4
ADDED
|
Binary file (993 kB). View file
|
|
|
examples/rotate.mp4
ADDED
|
Binary file (719 kB). View file
|
|
|
examples/shark-ocean.mp4
ADDED
|
Binary file (442 kB). View file
|
|
|
examples/surf.mp4
ADDED
|
Binary file (463 kB). View file
|
|
|
examples/woman-drink.mp4
ADDED
|
Binary file (495 kB). View file
|
|
|
examples/yacht.mp4
ADDED
|
Binary file (743 kB). View file
|
|
|
examples_frames/bear/00040.jpg
ADDED
|
examples_frames/bear/00041.jpg
ADDED
|
examples_frames/bear/00042.jpg
ADDED
|
examples_frames/bear/00043.jpg
ADDED
|
examples_frames/bear/00044.jpg
ADDED
|
examples_frames/bear/00045.jpg
ADDED
|
examples_frames/bear/00046.jpg
ADDED
|
examples_frames/bear/00047.jpg
ADDED
|
examples_frames/bear/00048.jpg
ADDED
|
examples_frames/bear/00049.jpg
ADDED
|
examples_frames/bear/00050.jpg
ADDED
|
examples_frames/bear/00051.jpg
ADDED
|
examples_frames/bear/00052.jpg
ADDED
|
examples_frames/bear/00053.jpg
ADDED
|
examples_frames/bear/00054.jpg
ADDED
|
examples_frames/bear/00055.jpg
ADDED
|
examples_frames/bear/00056.jpg
ADDED
|
examples_frames/bear/00057.jpg
ADDED
|
examples_frames/bear/00058.jpg
ADDED
|
examples_frames/bear/00059.jpg
ADDED
|
examples_frames/bear/00060.jpg
ADDED
|
examples_frames/bear/00061.jpg
ADDED
|
examples_frames/bear/00062.jpg
ADDED
|
examples_frames/bear/00063.jpg
ADDED
|