Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,277 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os, json, time, random
|
2 |
+
from collections import defaultdict
|
3 |
+
from datetime import date, datetime, timedelta
|
4 |
+
from dotenv import load_dotenv
|
5 |
import gradio as gr
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import finnhub
|
9 |
+
from openai import OpenAI
|
10 |
+
|
11 |
+
from io import StringIO
|
12 |
+
import requests
|
13 |
+
|
14 |
+
# Load environment variables from .env file
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# ---------- 0 CONFIG ---------------------------------------------------------
|
18 |
+
|
19 |
+
OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
|
20 |
+
FINNHUB_KEY = os.getenv("FINNHUB_API_KEY")
|
21 |
+
ALPHA_KEY = os.getenv("ALPHAVANTAGE_API_KEY")
|
22 |
+
|
23 |
+
if not FINNHUB_KEY:
|
24 |
+
raise RuntimeError("FINNHUB_API_KEY not set")
|
25 |
+
|
26 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
27 |
+
finnhub_client = finnhub.Client(api_key=FINNHUB_KEY)
|
28 |
+
|
29 |
+
|
30 |
+
SYSTEM_PROMPT = (
|
31 |
+
"You are a seasoned stock-market analyst. "
|
32 |
+
"Given recent company news and optional basic financials, "
|
33 |
+
"return:\n"
|
34 |
+
"[Positive Developments] – 2-4 bullets\n"
|
35 |
+
"[Potential Concerns] – 2-4 bullets\n"
|
36 |
+
"[Prediction & Analysis] – a one-week price outlook with rationale."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
|
39 |
|
40 |
+
# ---------- 1 DATE / UTILITY HELPERS ----------------------------------------
|
41 |
+
|
42 |
+
def today() -> str:
|
43 |
+
return date.today().strftime("%Y-%m-%d")
|
44 |
+
|
45 |
+
def n_weeks_before(date_string: str, n: int) -> str:
|
46 |
+
return (datetime.strptime(date_string, "%Y-%m-%d") -
|
47 |
+
timedelta(days=7 * n)).strftime("%Y-%m-%d")
|
48 |
+
|
49 |
+
|
50 |
+
# ---------- 2 DATA FETCHING --------------------------------------------------
|
51 |
+
|
52 |
+
def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
|
53 |
+
|
54 |
+
if not ALPHA_KEY:
|
55 |
+
raise RuntimeError("ALPHAVANTAGE_API_KEY is Missing")
|
56 |
+
|
57 |
+
# 免费端点:TIME_SERIES_DAILY :contentReference[oaicite:8]{index=8}
|
58 |
+
url = (
|
59 |
+
"https://www.alphavantage.co/query"
|
60 |
+
"?function=TIME_SERIES_DAILY"
|
61 |
+
f"&symbol={symbol}"
|
62 |
+
f"&apikey={ALPHA_KEY}"
|
63 |
+
"&datatype=csv"
|
64 |
+
"&outputsize=full"
|
65 |
+
)
|
66 |
+
|
67 |
+
# 重试 3 次
|
68 |
+
text = None
|
69 |
+
for attempt in range(3):
|
70 |
+
resp = requests.get(url, timeout=10)
|
71 |
+
if not resp.ok:
|
72 |
+
time.sleep(1)
|
73 |
+
continue
|
74 |
+
text = resp.text.strip()
|
75 |
+
if text.startswith("{"):
|
76 |
+
info = resp.json()
|
77 |
+
msg = info.get("Note") or info.get("Error Message") or str(info)
|
78 |
+
raise RuntimeError(f"Alpha Vantage Return Error:{msg}")
|
79 |
+
break
|
80 |
+
|
81 |
+
if not text:
|
82 |
+
raise RuntimeError(f"Alpha Vantage Connection Error:{url}")
|
83 |
+
|
84 |
+
df = pd.read_csv(StringIO(text))
|
85 |
+
date_col = "timestamp" if "timestamp" in df.columns else df.columns[0]
|
86 |
+
df[date_col] = pd.to_datetime(df[date_col])
|
87 |
+
df = df.sort_values(date_col).set_index(date_col)
|
88 |
+
|
89 |
+
data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
|
90 |
+
for i in range(len(steps) - 1):
|
91 |
+
s_date = pd.to_datetime(steps[i])
|
92 |
+
e_date = pd.to_datetime(steps[i+1])
|
93 |
+
seg = df.loc[s_date:e_date]
|
94 |
+
if seg.empty:
|
95 |
+
raise RuntimeError(
|
96 |
+
f"Alpha Vantage 无法获取 {symbol} 在 {steps[i]} – {steps[i+1]} 的数据"
|
97 |
+
)
|
98 |
+
data["Start Date"].append(seg.index[0])
|
99 |
+
data["Start Price"].append(seg["close"].iloc[0])
|
100 |
+
data["End Date"].append(seg.index[-1])
|
101 |
+
data["End Price"].append(seg["close"].iloc[-1])
|
102 |
+
# Limits:5 times/min
|
103 |
+
time.sleep(12)
|
104 |
+
|
105 |
+
return pd.DataFrame(data)
|
106 |
+
|
107 |
+
def current_basics(symbol: str, curday: str) -> dict:
|
108 |
+
raw = finnhub_client.company_basic_financials(symbol, "all")
|
109 |
+
if not raw["series"]:
|
110 |
+
return {}
|
111 |
+
merged = defaultdict(dict)
|
112 |
+
for metric, vals in raw["series"]["quarterly"].items():
|
113 |
+
for v in vals:
|
114 |
+
merged[v["period"]][metric] = v["v"]
|
115 |
+
|
116 |
+
latest = max((p for p in merged if p <= curday), default=None)
|
117 |
+
if latest is None:
|
118 |
+
return {}
|
119 |
+
d = dict(merged[latest])
|
120 |
+
d["period"] = latest
|
121 |
+
return d
|
122 |
+
|
123 |
+
def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame:
|
124 |
+
news_col = []
|
125 |
+
for _, row in df.iterrows():
|
126 |
+
start = row["Start Date"].strftime("%Y-%m-%d")
|
127 |
+
end = row["End Date"].strftime("%Y-%m-%d")
|
128 |
+
time.sleep(1) # Finnhub QPM guard
|
129 |
+
weekly = finnhub_client.company_news(symbol, _from=start, to=end)
|
130 |
+
weekly_fmt = [
|
131 |
+
{
|
132 |
+
"date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"),
|
133 |
+
"headline": n["headline"],
|
134 |
+
"summary" : n["summary"],
|
135 |
+
}
|
136 |
+
for n in weekly
|
137 |
+
]
|
138 |
+
weekly_fmt.sort(key=lambda x: x["date"])
|
139 |
+
news_col.append(json.dumps(weekly_fmt))
|
140 |
+
df["News"] = news_col
|
141 |
+
return df
|
142 |
+
|
143 |
+
|
144 |
+
# ---------- 3 PROMPT CONSTRUCTION -------------------------------------------
|
145 |
+
|
146 |
+
def sample_news(news: list[str], k: int = 5) -> list[str]:
|
147 |
+
if len(news) <= k: return news
|
148 |
+
return [news[i] for i in sorted(random.sample(range(len(news)), k))]
|
149 |
+
|
150 |
+
|
151 |
+
def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str:
|
152 |
+
# Company profile
|
153 |
+
prof = finnhub_client.company_profile2(symbol=symbol)
|
154 |
+
company_blurb = (
|
155 |
+
f"[Company Introduction]:\n{prof['name']} operates in the "
|
156 |
+
f"{prof['finnhubIndustry']} sector ({prof['country']}). "
|
157 |
+
f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} "
|
158 |
+
f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n"
|
159 |
+
)
|
160 |
+
|
161 |
+
# Past weeks block
|
162 |
+
past_block = ""
|
163 |
+
for _, row in df.iterrows():
|
164 |
+
term = "increased" if row["End Price"] > row["Start Price"] else "decreased"
|
165 |
+
head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, "
|
166 |
+
f"{symbol}'s stock price {term} from "
|
167 |
+
f"{row['Start Price']:.2f} to {row['End Price']:.2f}.")
|
168 |
+
news_items = json.loads(row["News"])
|
169 |
+
summaries = [
|
170 |
+
f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n"
|
171 |
+
for n in news_items
|
172 |
+
if not n["summary"].startswith("Looking for stock market analysis")
|
173 |
+
]
|
174 |
+
past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5))
|
175 |
+
|
176 |
+
# Optional basic financials
|
177 |
+
if use_basics:
|
178 |
+
basics = current_basics(symbol, curday)
|
179 |
+
if basics:
|
180 |
+
basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period")
|
181 |
+
basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n")
|
182 |
+
else:
|
183 |
+
basics_block = "\n[Basic Financials]: not available\n"
|
184 |
+
else:
|
185 |
+
basics_block = "\n[Basic Financials]: not requested\n"
|
186 |
+
|
187 |
+
horizon = f"{curday} to {n_weeks_before(curday, -1)}"
|
188 |
+
final_user_msg = (
|
189 |
+
company_blurb
|
190 |
+
+ past_block
|
191 |
+
+ basics_block
|
192 |
+
+ f"\nBased on all information before {curday}, analyse positive "
|
193 |
+
"developments and potential concerns for {symbol}, then predict its "
|
194 |
+
f"price movement for next week ({horizon})."
|
195 |
+
)
|
196 |
+
return final_user_msg
|
197 |
+
|
198 |
+
|
199 |
+
# ---------- 4 LLM CALL -------------------------------------------------------
|
200 |
+
|
201 |
+
def chat_completion(prompt: str,
|
202 |
+
model: str = OPENAI_MODEL,
|
203 |
+
temperature: float = 0.3,
|
204 |
+
stream: bool = False) -> str:
|
205 |
+
|
206 |
+
response = client.chat.completions.create(
|
207 |
+
model=model,
|
208 |
+
temperature=temperature,
|
209 |
+
stream=stream,
|
210 |
+
messages=[
|
211 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
212 |
+
{"role": "user", "content": prompt}
|
213 |
+
],
|
214 |
+
)
|
215 |
+
|
216 |
+
if stream:
|
217 |
+
collected = []
|
218 |
+
for chunk in response:
|
219 |
+
delta = chunk.choices[0].delta.content or ""
|
220 |
+
print(delta, end="", flush=True)
|
221 |
+
collected.append(delta)
|
222 |
+
print()
|
223 |
+
return "".join(collected)
|
224 |
+
|
225 |
+
# without stream
|
226 |
+
return response.choices[0].message.content
|
227 |
+
|
228 |
+
|
229 |
+
# ---------- 5 MAIN ENTRY (CLI test) -----------------------------------------
|
230 |
+
|
231 |
+
def predict(symbol: str = "AAPL",
|
232 |
+
curday: str = today(),
|
233 |
+
n_weeks: int = 3,
|
234 |
+
use_basics: bool = False,
|
235 |
+
stream: bool = False) -> tuple[str, str]:
|
236 |
+
steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1]
|
237 |
+
df = get_stock_data(symbol, steps)
|
238 |
+
df = attach_news(symbol, df)
|
239 |
+
|
240 |
+
prompt_info = make_prompt(symbol, df, curday, use_basics)
|
241 |
+
answer = chat_completion(prompt_info, stream=stream)
|
242 |
+
|
243 |
+
return prompt_info, answer
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
# ---------- 6 SETUP HF -----------------------------------------
|
248 |
+
|
249 |
+
|
250 |
+
def hf_predict(symbol, n_weeks, use_basics):
|
251 |
+
# 1. get curday
|
252 |
+
curday = date.today().strftime("%Y-%m-%d")
|
253 |
+
# 2. call predict
|
254 |
+
prompt, answer = predict(
|
255 |
+
symbol=symbol.upper(),
|
256 |
+
curday=curday,
|
257 |
+
n_weeks=int(n_weeks),
|
258 |
+
use_basics=bool(use_basics),
|
259 |
+
stream=False
|
260 |
+
)
|
261 |
+
return prompt, answer
|
262 |
+
|
263 |
+
with gr.Blocks() as demo:
|
264 |
+
gr.Markdown("FinRobot_Forecaster")
|
265 |
+
with gr.Row():
|
266 |
+
symbol = gr.Textbox(label="Ticker(eg. AAPL)", value="AAPL")
|
267 |
+
n_weeks = gr.Slider(1, 6, value=3, step=1, label="Trace Back Weeks")
|
268 |
+
use_basics = gr.Checkbox(label="Add Basic Financials", value=False)
|
269 |
+
output_prompt = gr.Textbox(label="Model Prompt", lines=8)
|
270 |
+
output_answer = gr.Textbox(label="Model Output", lines=12)
|
271 |
+
btn = gr.Button("Run Forecaster")
|
272 |
+
btn.click(fn=hf_predict,
|
273 |
+
inputs=[symbol, n_weeks, use_basics],
|
274 |
+
outputs=[output_prompt, output_answer])
|
275 |
+
|
276 |
if __name__ == "__main__":
|
277 |
+
demo.launch()
|