llk010502 commited on
Commit
aadd767
·
verified ·
1 Parent(s): d470ad7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +272 -59
app.py CHANGED
@@ -1,64 +1,277 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os, json, time, random
2
+ from collections import defaultdict
3
+ from datetime import date, datetime, timedelta
4
+ from dotenv import load_dotenv
5
  import gradio as gr
6
+
7
+ import pandas as pd
8
+ import finnhub
9
+ from openai import OpenAI
10
+
11
+ from io import StringIO
12
+ import requests
13
+
14
+ # Load environment variables from .env file
15
+ load_dotenv()
16
+
17
+ # ---------- 0 CONFIG ---------------------------------------------------------
18
+
19
+ OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
20
+ FINNHUB_KEY = os.getenv("FINNHUB_API_KEY")
21
+ ALPHA_KEY = os.getenv("ALPHAVANTAGE_API_KEY")
22
+
23
+ if not FINNHUB_KEY:
24
+ raise RuntimeError("FINNHUB_API_KEY not set")
25
+
26
+ client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
27
+ finnhub_client = finnhub.Client(api_key=FINNHUB_KEY)
28
+
29
+
30
+ SYSTEM_PROMPT = (
31
+ "You are a seasoned stock-market analyst. "
32
+ "Given recent company news and optional basic financials, "
33
+ "return:\n"
34
+ "[Positive Developments] 2-4 bullets\n"
35
+ "[Potential Concerns] – 2-4 bullets\n"
36
+ "[Prediction & Analysis] – a one-week price outlook with rationale."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  )
38
 
39
 
40
+ # ---------- 1 DATE / UTILITY HELPERS ----------------------------------------
41
+
42
+ def today() -> str:
43
+ return date.today().strftime("%Y-%m-%d")
44
+
45
+ def n_weeks_before(date_string: str, n: int) -> str:
46
+ return (datetime.strptime(date_string, "%Y-%m-%d") -
47
+ timedelta(days=7 * n)).strftime("%Y-%m-%d")
48
+
49
+
50
+ # ---------- 2 DATA FETCHING --------------------------------------------------
51
+
52
+ def get_stock_data(symbol: str, steps: list[str]) -> pd.DataFrame:
53
+
54
+ if not ALPHA_KEY:
55
+ raise RuntimeError("ALPHAVANTAGE_API_KEY is Missing")
56
+
57
+ # 免费端点:TIME_SERIES_DAILY :contentReference[oaicite:8]{index=8}
58
+ url = (
59
+ "https://www.alphavantage.co/query"
60
+ "?function=TIME_SERIES_DAILY"
61
+ f"&symbol={symbol}"
62
+ f"&apikey={ALPHA_KEY}"
63
+ "&datatype=csv"
64
+ "&outputsize=full"
65
+ )
66
+
67
+ # 重试 3 次
68
+ text = None
69
+ for attempt in range(3):
70
+ resp = requests.get(url, timeout=10)
71
+ if not resp.ok:
72
+ time.sleep(1)
73
+ continue
74
+ text = resp.text.strip()
75
+ if text.startswith("{"):
76
+ info = resp.json()
77
+ msg = info.get("Note") or info.get("Error Message") or str(info)
78
+ raise RuntimeError(f"Alpha Vantage Return Error:{msg}")
79
+ break
80
+
81
+ if not text:
82
+ raise RuntimeError(f"Alpha Vantage Connection Error:{url}")
83
+
84
+ df = pd.read_csv(StringIO(text))
85
+ date_col = "timestamp" if "timestamp" in df.columns else df.columns[0]
86
+ df[date_col] = pd.to_datetime(df[date_col])
87
+ df = df.sort_values(date_col).set_index(date_col)
88
+
89
+ data = {"Start Date": [], "End Date": [], "Start Price": [], "End Price": []}
90
+ for i in range(len(steps) - 1):
91
+ s_date = pd.to_datetime(steps[i])
92
+ e_date = pd.to_datetime(steps[i+1])
93
+ seg = df.loc[s_date:e_date]
94
+ if seg.empty:
95
+ raise RuntimeError(
96
+ f"Alpha Vantage 无法获取 {symbol} 在 {steps[i]} – {steps[i+1]} 的数据"
97
+ )
98
+ data["Start Date"].append(seg.index[0])
99
+ data["Start Price"].append(seg["close"].iloc[0])
100
+ data["End Date"].append(seg.index[-1])
101
+ data["End Price"].append(seg["close"].iloc[-1])
102
+ # Limits:5 times/min
103
+ time.sleep(12)
104
+
105
+ return pd.DataFrame(data)
106
+
107
+ def current_basics(symbol: str, curday: str) -> dict:
108
+ raw = finnhub_client.company_basic_financials(symbol, "all")
109
+ if not raw["series"]:
110
+ return {}
111
+ merged = defaultdict(dict)
112
+ for metric, vals in raw["series"]["quarterly"].items():
113
+ for v in vals:
114
+ merged[v["period"]][metric] = v["v"]
115
+
116
+ latest = max((p for p in merged if p <= curday), default=None)
117
+ if latest is None:
118
+ return {}
119
+ d = dict(merged[latest])
120
+ d["period"] = latest
121
+ return d
122
+
123
+ def attach_news(symbol: str, df: pd.DataFrame) -> pd.DataFrame:
124
+ news_col = []
125
+ for _, row in df.iterrows():
126
+ start = row["Start Date"].strftime("%Y-%m-%d")
127
+ end = row["End Date"].strftime("%Y-%m-%d")
128
+ time.sleep(1) # Finnhub QPM guard
129
+ weekly = finnhub_client.company_news(symbol, _from=start, to=end)
130
+ weekly_fmt = [
131
+ {
132
+ "date" : datetime.fromtimestamp(n["datetime"]).strftime("%Y%m%d%H%M%S"),
133
+ "headline": n["headline"],
134
+ "summary" : n["summary"],
135
+ }
136
+ for n in weekly
137
+ ]
138
+ weekly_fmt.sort(key=lambda x: x["date"])
139
+ news_col.append(json.dumps(weekly_fmt))
140
+ df["News"] = news_col
141
+ return df
142
+
143
+
144
+ # ---------- 3 PROMPT CONSTRUCTION -------------------------------------------
145
+
146
+ def sample_news(news: list[str], k: int = 5) -> list[str]:
147
+ if len(news) <= k: return news
148
+ return [news[i] for i in sorted(random.sample(range(len(news)), k))]
149
+
150
+
151
+ def make_prompt(symbol: str, df: pd.DataFrame, curday: str, use_basics=False) -> str:
152
+ # Company profile
153
+ prof = finnhub_client.company_profile2(symbol=symbol)
154
+ company_blurb = (
155
+ f"[Company Introduction]:\n{prof['name']} operates in the "
156
+ f"{prof['finnhubIndustry']} sector ({prof['country']}). "
157
+ f"Founded {prof['ipo']}, market cap {prof['marketCapitalization']:.1f} "
158
+ f"{prof['currency']}; ticker {symbol} on {prof['exchange']}.\n"
159
+ )
160
+
161
+ # Past weeks block
162
+ past_block = ""
163
+ for _, row in df.iterrows():
164
+ term = "increased" if row["End Price"] > row["Start Price"] else "decreased"
165
+ head = (f"From {row['Start Date']:%Y-%m-%d} to {row['End Date']:%Y-%m-%d}, "
166
+ f"{symbol}'s stock price {term} from "
167
+ f"{row['Start Price']:.2f} to {row['End Price']:.2f}.")
168
+ news_items = json.loads(row["News"])
169
+ summaries = [
170
+ f"[Headline] {n['headline']}\n[Summary] {n['summary']}\n"
171
+ for n in news_items
172
+ if not n["summary"].startswith("Looking for stock market analysis")
173
+ ]
174
+ past_block += "\n" + head + "\n" + "".join(sample_news(summaries, 5))
175
+
176
+ # Optional basic financials
177
+ if use_basics:
178
+ basics = current_basics(symbol, curday)
179
+ if basics:
180
+ basics_txt = "\n".join(f"{k}: {v}" for k, v in basics.items() if k != "period")
181
+ basics_block = (f"\n[Basic Financials] (reported {basics['period']}):\n{basics_txt}\n")
182
+ else:
183
+ basics_block = "\n[Basic Financials]: not available\n"
184
+ else:
185
+ basics_block = "\n[Basic Financials]: not requested\n"
186
+
187
+ horizon = f"{curday} to {n_weeks_before(curday, -1)}"
188
+ final_user_msg = (
189
+ company_blurb
190
+ + past_block
191
+ + basics_block
192
+ + f"\nBased on all information before {curday}, analyse positive "
193
+ "developments and potential concerns for {symbol}, then predict its "
194
+ f"price movement for next week ({horizon})."
195
+ )
196
+ return final_user_msg
197
+
198
+
199
+ # ---------- 4 LLM CALL -------------------------------------------------------
200
+
201
+ def chat_completion(prompt: str,
202
+ model: str = OPENAI_MODEL,
203
+ temperature: float = 0.3,
204
+ stream: bool = False) -> str:
205
+
206
+ response = client.chat.completions.create(
207
+ model=model,
208
+ temperature=temperature,
209
+ stream=stream,
210
+ messages=[
211
+ {"role": "system", "content": SYSTEM_PROMPT},
212
+ {"role": "user", "content": prompt}
213
+ ],
214
+ )
215
+
216
+ if stream:
217
+ collected = []
218
+ for chunk in response:
219
+ delta = chunk.choices[0].delta.content or ""
220
+ print(delta, end="", flush=True)
221
+ collected.append(delta)
222
+ print()
223
+ return "".join(collected)
224
+
225
+ # without stream
226
+ return response.choices[0].message.content
227
+
228
+
229
+ # ---------- 5 MAIN ENTRY (CLI test) -----------------------------------------
230
+
231
+ def predict(symbol: str = "AAPL",
232
+ curday: str = today(),
233
+ n_weeks: int = 3,
234
+ use_basics: bool = False,
235
+ stream: bool = False) -> tuple[str, str]:
236
+ steps = [n_weeks_before(curday, n) for n in range(n_weeks + 1)][::-1]
237
+ df = get_stock_data(symbol, steps)
238
+ df = attach_news(symbol, df)
239
+
240
+ prompt_info = make_prompt(symbol, df, curday, use_basics)
241
+ answer = chat_completion(prompt_info, stream=stream)
242
+
243
+ return prompt_info, answer
244
+
245
+
246
+
247
+ # ---------- 6 SETUP HF -----------------------------------------
248
+
249
+
250
+ def hf_predict(symbol, n_weeks, use_basics):
251
+ # 1. get curday
252
+ curday = date.today().strftime("%Y-%m-%d")
253
+ # 2. call predict
254
+ prompt, answer = predict(
255
+ symbol=symbol.upper(),
256
+ curday=curday,
257
+ n_weeks=int(n_weeks),
258
+ use_basics=bool(use_basics),
259
+ stream=False
260
+ )
261
+ return prompt, answer
262
+
263
+ with gr.Blocks() as demo:
264
+ gr.Markdown("FinRobot_Forecaster")
265
+ with gr.Row():
266
+ symbol = gr.Textbox(label="Ticker(eg. AAPL)", value="AAPL")
267
+ n_weeks = gr.Slider(1, 6, value=3, step=1, label="Trace Back Weeks")
268
+ use_basics = gr.Checkbox(label="Add Basic Financials", value=False)
269
+ output_prompt = gr.Textbox(label="Model Prompt", lines=8)
270
+ output_answer = gr.Textbox(label="Model Output", lines=12)
271
+ btn = gr.Button("Run Forecaster")
272
+ btn.click(fn=hf_predict,
273
+ inputs=[symbol, n_weeks, use_basics],
274
+ outputs=[output_prompt, output_answer])
275
+
276
  if __name__ == "__main__":
277
+ demo.launch()