Update app.py
Browse files
app.py
CHANGED
|
@@ -1,54 +1,51 @@
|
|
| 1 |
import os
|
| 2 |
-
import requests
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import torch
|
| 5 |
-
import gradio as gr
|
| 6 |
from huggingface_hub import login
|
| 7 |
-
from transformers import
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
-
# Hugging Face
|
| 11 |
hf_token = os.getenv('HF_AUTH_TOKEN')
|
| 12 |
if not hf_token:
|
| 13 |
raise ValueError("Hugging Face token is not set in the environment variables.")
|
| 14 |
login(token=hf_token)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
# Initialize
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
description="Upload an image or provide an image URL to generate a caption and use it to create a similar design.",
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
# Launch Gradio app
|
| 53 |
-
interface.launch()
|
| 54 |
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from huggingface_hub import login
|
| 3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 4 |
+
|
| 5 |
+
|
| 6 |
|
| 7 |
+
# Get Hugging Face Token from environment variable
|
| 8 |
hf_token = os.getenv('HF_AUTH_TOKEN')
|
| 9 |
if not hf_token:
|
| 10 |
raise ValueError("Hugging Face token is not set in the environment variables.")
|
| 11 |
login(token=hf_token)
|
| 12 |
|
| 13 |
+
# Load the processor and model
|
| 14 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 15 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 16 |
+
import gradio as gr
|
| 17 |
+
from diffusers import DiffusionPipeline
|
| 18 |
+
import torch
|
| 19 |
+
import spaces # Hugging Face Spaces module
|
| 20 |
|
| 21 |
+
# Initialize the model
|
| 22 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
|
| 23 |
+
st.title("Image Caption Generator")
|
| 24 |
+
st.write("Upload an image or provide an image URL to generate its caption.")
|
| 25 |
+
|
| 26 |
+
# Option for image upload
|
| 27 |
+
img_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
| 28 |
+
if img_file is not None:
|
| 29 |
+
raw_image = Image.open(img_file).convert('RGB')
|
| 30 |
+
text = "a photography of"
|
| 31 |
+
inputs = processor(raw_image, text, return_tensors="pt", padding =True, truncation=True, max_length =250)
|
| 32 |
+
out = model.generate(**inputs)
|
| 33 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 34 |
+
|
| 35 |
+
@spaces.GPU(duration=300)
|
| 36 |
+
def generate_image(prompt):
|
| 37 |
+
# Move the model to GPU if available
|
| 38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
+
pipe.to(device)
|
| 40 |
+
image = pipe(prompt).images[0]
|
| 41 |
+
return image
|
| 42 |
+
|
| 43 |
+
# Create the Gradio interface
|
| 44 |
+
iface = gr.Interface(fn=generate_image,
|
| 45 |
+
inputs=caption,
|
| 46 |
+
outputs=gr.Image(label="Generated Image"),
|
| 47 |
+
title="Astronaut in a Jungle Model")
|
| 48 |
+
|
| 49 |
+
# Launch the interface
|
| 50 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|