Spaces:
Runtime error
Runtime error
demo
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +15 -0
- app.py +427 -0
- assets/dog.webp +0 -0
- assets/vulcano.jpg +0 -0
- assets/vulcano_mask.webp +0 -0
- fluxcombined.py +1607 -0
- requirements.txt +9 -0
- saved_results/20241126_053639/input.png +0 -0
- saved_results/20241126_053639/mask.png +0 -0
- saved_results/20241126_053639/output.png +3 -0
- saved_results/20241126_053639/parameters.json +13 -0
- saved_results/20241126_055109/input.png +0 -0
- saved_results/20241126_055109/mask.png +0 -0
- saved_results/20241126_055109/output.png +3 -0
- saved_results/20241126_055109/parameters.json +13 -0
- saved_results/20241126_173140/input.png +0 -0
- saved_results/20241126_173140/mask.png +0 -0
- saved_results/20241126_173140/output.png +3 -0
- saved_results/20241126_173140/parameters.json +13 -0
- saved_results/20241126_181436/input.png +3 -0
- saved_results/20241126_181436/mask.png +0 -0
- saved_results/20241126_181436/output.png +0 -0
- saved_results/20241126_181436/parameters.json +13 -0
- saved_results/20241126_181633/input.png +3 -0
- saved_results/20241126_181633/mask.png +0 -0
- saved_results/20241126_181633/output.png +0 -0
- saved_results/20241126_181633/parameters.json +13 -0
- saved_results/20241126_214810/input.png +0 -0
- saved_results/20241126_214810/mask.png +0 -0
- saved_results/20241126_214810/output.png +3 -0
- saved_results/20241126_214810/parameters.json +13 -0
- saved_results/20241126_214908/input.png +0 -0
- saved_results/20241126_214908/mask.png +0 -0
- saved_results/20241126_214908/output.png +3 -0
- saved_results/20241126_214908/parameters.json +13 -0
- saved_results/20241126_215043/input.png +0 -0
- saved_results/20241126_215043/mask.png +0 -0
- saved_results/20241126_215043/output.png +3 -0
- saved_results/20241126_215043/parameters.json +13 -0
- saved_results/20241126_221300/input.png +0 -0
- saved_results/20241126_221300/mask.png +0 -0
- saved_results/20241126_221300/output.png +3 -0
- saved_results/20241126_221300/parameters.json +13 -0
- saved_results/20241126_222257/input.png +0 -0
- saved_results/20241126_222257/mask.png +0 -0
- saved_results/20241126_222257/output.png +3 -0
- saved_results/20241126_222257/parameters.json +13 -0
- saved_results/20241126_222442/input.png +0 -0
- saved_results/20241126_222442/mask.png +0 -0
- saved_results/20241126_222442/output.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,18 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
saved_results/20241126_053639/output.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
saved_results/20241126_055109/output.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
saved_results/20241126_173140/output.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
saved_results/20241126_181436/input.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
saved_results/20241126_181633/input.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
saved_results/20241126_214810/output.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
saved_results/20241126_214908/output.png filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
saved_results/20241126_215043/output.png filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
saved_results/20241126_221300/output.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
saved_results/20241126_222257/output.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
saved_results/20241126_222442/output.png filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
saved_results/20241126_222522/output.png filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
saved_results/20241126_223634/output.png filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
saved_results/20241126_223719/output.png filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
saved_results/20241127_025429/output.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionImg2ImgPipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import random
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import os
|
| 10 |
+
import json
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
|
| 13 |
+
from fluxcombined import FluxPipeline
|
| 14 |
+
from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 15 |
+
|
| 16 |
+
# Load the Stable Diffusion Inpainting model
|
| 17 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="scheduler")
|
| 18 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, scheduler=scheduler)
|
| 19 |
+
pipe.to("cuda") # Comment this line if GPU is not available
|
| 20 |
+
|
| 21 |
+
# Function to process the image
|
| 22 |
+
@spaces.GPU(duration=120)
|
| 23 |
+
def process_image(
|
| 24 |
+
mode, image_layers, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
|
| 25 |
+
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
|
| 26 |
+
):
|
| 27 |
+
image_with_mask = {
|
| 28 |
+
"image": image_layers["background"],
|
| 29 |
+
"mask": image_layers["layers"][0] if mask_input is None else mask_input
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
# Set seed
|
| 33 |
+
if randomize_seed or seed is None:
|
| 34 |
+
seed = random.randint(0, 2**32 - 1)
|
| 35 |
+
generator = torch.Generator("cuda").manual_seed(int(seed))
|
| 36 |
+
|
| 37 |
+
# Unpack image and mask
|
| 38 |
+
if image_with_mask is None:
|
| 39 |
+
return None, f"❌ Please upload an image and create a mask."
|
| 40 |
+
image = image_with_mask["image"]
|
| 41 |
+
mask = image_with_mask["mask"]
|
| 42 |
+
|
| 43 |
+
if image is None or mask is None:
|
| 44 |
+
return None, f"❌ Please ensure both image and mask are provided."
|
| 45 |
+
|
| 46 |
+
# Convert images to RGB
|
| 47 |
+
image = image.convert("RGB")
|
| 48 |
+
mask = mask.split()[-1] # Convert mask to grayscale
|
| 49 |
+
|
| 50 |
+
if mode == "Inpainting":
|
| 51 |
+
if not prompt:
|
| 52 |
+
return None, f"❌ Please provide a prompt for inpainting."
|
| 53 |
+
with torch.autocast("cuda"):
|
| 54 |
+
# Placeholder for using advanced parameters in the future
|
| 55 |
+
# Adjust parameters according to advanced settings if applicable
|
| 56 |
+
result = pipe.inpaint(
|
| 57 |
+
prompt=prompt,
|
| 58 |
+
input_image=image.resize((1024, 1024)),
|
| 59 |
+
mask_image=mask.resize((1024, 1024)),
|
| 60 |
+
num_inference_steps=num_inference_steps,
|
| 61 |
+
guidance_scale=0.5,
|
| 62 |
+
generator=generator,
|
| 63 |
+
save_masked_image=False,
|
| 64 |
+
output_path="",
|
| 65 |
+
learning_rate=learning_rate,
|
| 66 |
+
max_steps=max_steps
|
| 67 |
+
).images[0]
|
| 68 |
+
pipe.vae = pipe.vae.to(torch.float16)
|
| 69 |
+
return result, f"✅ Inpainting completed with seed {seed}."
|
| 70 |
+
elif mode == "Editing":
|
| 71 |
+
if not edit_prompt:
|
| 72 |
+
return None, f"❌ Please provide a prompt for editing."
|
| 73 |
+
if not prompt:
|
| 74 |
+
prompt = ""
|
| 75 |
+
# Resize the mask to match the image
|
| 76 |
+
# mask = mask.resize(image.size)
|
| 77 |
+
with torch.autocast("cuda"):
|
| 78 |
+
# Placeholder for using advanced parameters in the future
|
| 79 |
+
# Adjust parameters according to advanced settings if applicable
|
| 80 |
+
result = pipe.edit2(
|
| 81 |
+
prompt=edit_prompt,
|
| 82 |
+
input_image=image.resize((1024, 1024)),
|
| 83 |
+
mask_image=mask.resize((1024, 1024)),
|
| 84 |
+
num_inference_steps=num_inference_steps,
|
| 85 |
+
guidance_scale=0.0,
|
| 86 |
+
generator=generator,
|
| 87 |
+
save_masked_image=False,
|
| 88 |
+
output_path="",
|
| 89 |
+
learning_rate=learning_rate,
|
| 90 |
+
max_steps=max_steps,
|
| 91 |
+
optimization_steps=optimization_steps,
|
| 92 |
+
true_cfg=true_cfg,
|
| 93 |
+
negative_prompt=prompt,
|
| 94 |
+
source_steps=max_source_steps,
|
| 95 |
+
).images[0]
|
| 96 |
+
return result, f"✅ Editing completed with seed {seed}."
|
| 97 |
+
else:
|
| 98 |
+
return None, f"❌ Invalid mode selected."
|
| 99 |
+
|
| 100 |
+
# Design the Gradio interface
|
| 101 |
+
with gr.Blocks() as demo:
|
| 102 |
+
gr.Markdown(
|
| 103 |
+
"""
|
| 104 |
+
<style>
|
| 105 |
+
body {background-color: #f5f5f5; color: #333333;}
|
| 106 |
+
h1 {text-align: center; font-family: 'Helvetica', sans-serif; margin-bottom: 10px;}
|
| 107 |
+
h2 {text-align: center; color: #666666; font-weight: normal; margin-bottom: 30px;}
|
| 108 |
+
.gradio-container {max-width: 800px; margin: auto;}
|
| 109 |
+
.footer {text-align: center; margin-top: 20px; color: #999999; font-size: 12px;}
|
| 110 |
+
</style>
|
| 111 |
+
"""
|
| 112 |
+
)
|
| 113 |
+
gr.Markdown("<h1>🍲 FlowChef 🍲</h1>")
|
| 114 |
+
gr.Markdown("<h2>Inversion/Gradient/Training-free Steering of Flux.1[Dev]</h2>")
|
| 115 |
+
gr.Markdown("<h2><p><a href='https://flowchef.github.io/'>Project Page</a> | <a href='#'>Paper</a></p> (Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)</h2>")
|
| 116 |
+
gr.Markdown("<h3>💡 We recommend going through our <a href='#'>tutorial introduction</a> before getting started!</h3>")
|
| 117 |
+
|
| 118 |
+
# Store current state
|
| 119 |
+
current_input_image = None
|
| 120 |
+
current_mask = None
|
| 121 |
+
current_output_image = None
|
| 122 |
+
current_params = {}
|
| 123 |
+
|
| 124 |
+
# Images at the top
|
| 125 |
+
with gr.Row():
|
| 126 |
+
with gr.Column():
|
| 127 |
+
image_input = gr.ImageMask(
|
| 128 |
+
# source="upload",
|
| 129 |
+
# tool="sketch",
|
| 130 |
+
type="pil",
|
| 131 |
+
label="Input Image and Mask",
|
| 132 |
+
image_mode="RGBA",
|
| 133 |
+
height=512,
|
| 134 |
+
width=512,
|
| 135 |
+
)
|
| 136 |
+
with gr.Column():
|
| 137 |
+
output_image = gr.Image(label="Output Image")
|
| 138 |
+
|
| 139 |
+
# All options below
|
| 140 |
+
with gr.Column():
|
| 141 |
+
mode = gr.Radio(
|
| 142 |
+
choices=["Inpainting", "Editing"], label="Select Mode", value="Inpainting"
|
| 143 |
+
)
|
| 144 |
+
prompt = gr.Textbox(
|
| 145 |
+
label="Prompt",
|
| 146 |
+
placeholder="Describe what should appear in the masked area..."
|
| 147 |
+
)
|
| 148 |
+
edit_prompt = gr.Textbox(
|
| 149 |
+
label="Editing Prompt",
|
| 150 |
+
placeholder="Describe how you want to edit the image..."
|
| 151 |
+
)
|
| 152 |
+
with gr.Row():
|
| 153 |
+
seed = gr.Number(label="Seed (Optional)", value=None)
|
| 154 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 155 |
+
num_inference_steps = gr.Slider(
|
| 156 |
+
label="Inference Steps", minimum=1, maximum=50, value=30
|
| 157 |
+
)
|
| 158 |
+
# Advanced settings in an accordion
|
| 159 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 160 |
+
max_steps = gr.Slider(label="Max Steps", minimum=1, maximum=30, value=30)
|
| 161 |
+
learning_rate = gr.Slider(label="Learning Rate", minimum=0.1, maximum=1.0, value=0.5)
|
| 162 |
+
true_cfg = gr.Slider(label="Guidance Scale (only for editing)", minimum=1, maximum=20, value=2)
|
| 163 |
+
max_source_steps = gr.Slider(label="Max Source Steps (only for editing)", minimum=1, maximum=30, value=20)
|
| 164 |
+
optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1)
|
| 165 |
+
mask_input = gr.Image(
|
| 166 |
+
type="pil",
|
| 167 |
+
label="Optional Mask",
|
| 168 |
+
image_mode="RGBA",
|
| 169 |
+
)
|
| 170 |
+
with gr.Row():
|
| 171 |
+
run_button = gr.Button("Run", variant="primary")
|
| 172 |
+
save_button = gr.Button("Save Data", variant="secondary")
|
| 173 |
+
|
| 174 |
+
def update_visibility(selected_mode):
|
| 175 |
+
if selected_mode == "Inpainting":
|
| 176 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 177 |
+
else:
|
| 178 |
+
return gr.update(visible=True), gr.update(visible=True)
|
| 179 |
+
|
| 180 |
+
mode.change(
|
| 181 |
+
update_visibility,
|
| 182 |
+
inputs=mode,
|
| 183 |
+
outputs=[prompt, edit_prompt],
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
def run_and_update_status(
|
| 187 |
+
mode, image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
|
| 188 |
+
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
|
| 189 |
+
):
|
| 190 |
+
result_image, result_status = process_image(
|
| 191 |
+
mode, image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
|
| 192 |
+
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Store current state
|
| 196 |
+
global current_input_image, current_mask, current_output_image, current_params
|
| 197 |
+
|
| 198 |
+
current_input_image = image_with_mask["background"] if image_with_mask else None
|
| 199 |
+
current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None)
|
| 200 |
+
current_output_image = result_image
|
| 201 |
+
current_params = {
|
| 202 |
+
"mode": mode,
|
| 203 |
+
"prompt": prompt,
|
| 204 |
+
"edit_prompt": edit_prompt,
|
| 205 |
+
"seed": seed,
|
| 206 |
+
"randomize_seed": randomize_seed,
|
| 207 |
+
"num_inference_steps": num_inference_steps,
|
| 208 |
+
"max_steps": max_steps,
|
| 209 |
+
"learning_rate": learning_rate,
|
| 210 |
+
"max_source_steps": max_source_steps,
|
| 211 |
+
"optimization_steps": optimization_steps,
|
| 212 |
+
"true_cfg": true_cfg
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
return result_image
|
| 216 |
+
|
| 217 |
+
def save_data():
|
| 218 |
+
if not os.path.exists("saved_results"):
|
| 219 |
+
os.makedirs("saved_results")
|
| 220 |
+
|
| 221 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 222 |
+
save_dir = os.path.join("saved_results", timestamp)
|
| 223 |
+
os.makedirs(save_dir)
|
| 224 |
+
|
| 225 |
+
# Save images
|
| 226 |
+
if current_input_image:
|
| 227 |
+
current_input_image.save(os.path.join(save_dir, "input.png"))
|
| 228 |
+
if current_mask:
|
| 229 |
+
current_mask.save(os.path.join(save_dir, "mask.png"))
|
| 230 |
+
if current_output_image:
|
| 231 |
+
current_output_image.save(os.path.join(save_dir, "output.png"))
|
| 232 |
+
|
| 233 |
+
# Save parameters
|
| 234 |
+
with open(os.path.join(save_dir, "parameters.json"), "w") as f:
|
| 235 |
+
json.dump(current_params, f, indent=4)
|
| 236 |
+
|
| 237 |
+
return f"✅ Data saved in {save_dir}"
|
| 238 |
+
|
| 239 |
+
run_button.click(
|
| 240 |
+
fn=run_and_update_status,
|
| 241 |
+
inputs=[
|
| 242 |
+
mode,
|
| 243 |
+
image_input,
|
| 244 |
+
prompt,
|
| 245 |
+
edit_prompt,
|
| 246 |
+
seed,
|
| 247 |
+
randomize_seed,
|
| 248 |
+
num_inference_steps,
|
| 249 |
+
max_steps,
|
| 250 |
+
learning_rate,
|
| 251 |
+
max_source_steps,
|
| 252 |
+
optimization_steps,
|
| 253 |
+
true_cfg,
|
| 254 |
+
mask_input
|
| 255 |
+
],
|
| 256 |
+
outputs=output_image,
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
save_button.click(fn=save_data)
|
| 260 |
+
|
| 261 |
+
gr.Markdown(
|
| 262 |
+
"<div class='footer'>Developed with ❤️ using Flux and Gradio by <a href='https://maitreyapatel.com'>Maitreya Patel</a></div>"
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
def load_example_image_with_mask(image_path):
|
| 266 |
+
# Load the image
|
| 267 |
+
image = Image.open(image_path)
|
| 268 |
+
# Create an empty mask of the same size
|
| 269 |
+
mask = Image.new('L', image.size, 0)
|
| 270 |
+
return {"background": image, "layers": [mask], "composite": image}
|
| 271 |
+
|
| 272 |
+
examples_dir = "assets"
|
| 273 |
+
volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg"))
|
| 274 |
+
dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp"))
|
| 275 |
+
|
| 276 |
+
gr.Examples(
|
| 277 |
+
examples=[
|
| 278 |
+
[
|
| 279 |
+
"Inpainting", # mode
|
| 280 |
+
"./saved_results/20241126_053639/input.png", # image with mask
|
| 281 |
+
"./saved_results/20241126_053639/mask.png",
|
| 282 |
+
"./saved_results/20241126_053639/output.png",
|
| 283 |
+
"a dog", # prompt
|
| 284 |
+
" ", # edit_prompt
|
| 285 |
+
0, # seed
|
| 286 |
+
True, # randomize_seed
|
| 287 |
+
30, # num_inference_steps
|
| 288 |
+
30, # max_steps
|
| 289 |
+
1.0, # learning_rate
|
| 290 |
+
20, # max_source_steps
|
| 291 |
+
10, # optimization_steps
|
| 292 |
+
2, # true_cfg
|
| 293 |
+
],
|
| 294 |
+
[
|
| 295 |
+
"Inpainting", # mode
|
| 296 |
+
"./saved_results/20241126_173140/input.png", # image with mask
|
| 297 |
+
"./saved_results/20241126_173140/mask.png",
|
| 298 |
+
"./saved_results/20241126_173140/output.png",
|
| 299 |
+
"a cat with blue eyes", # prompt
|
| 300 |
+
" ", # edit_prompt
|
| 301 |
+
0, # seed
|
| 302 |
+
True, # randomize_seed
|
| 303 |
+
30, # num_inference_steps
|
| 304 |
+
20, # max_steps
|
| 305 |
+
1.0, # learning_rate
|
| 306 |
+
20, # max_source_steps
|
| 307 |
+
10, # optimization_steps
|
| 308 |
+
2, # true_cfg
|
| 309 |
+
],
|
| 310 |
+
[
|
| 311 |
+
"Editing", # mode
|
| 312 |
+
"./saved_results/20241126_181633/input.png", # image with mask
|
| 313 |
+
"./saved_results/20241126_181633/mask.png",
|
| 314 |
+
"./saved_results/20241126_181633/output.png",
|
| 315 |
+
" ", # prompt
|
| 316 |
+
"volcano eruption", # edit_prompt
|
| 317 |
+
0, # seed
|
| 318 |
+
True, # randomize_seed
|
| 319 |
+
30, # num_inference_steps
|
| 320 |
+
20, # max_steps
|
| 321 |
+
0.5, # learning_rate
|
| 322 |
+
2, # max_source_steps
|
| 323 |
+
3, # optimization_steps
|
| 324 |
+
4.5, # true_cfg
|
| 325 |
+
],
|
| 326 |
+
[
|
| 327 |
+
"Editing", # mode
|
| 328 |
+
"./saved_results/20241126_214810/input.png", # image with mask
|
| 329 |
+
"./saved_results/20241126_214810/mask.png",
|
| 330 |
+
"./saved_results/20241126_214810/output.png",
|
| 331 |
+
" ", # prompt
|
| 332 |
+
"a dog with flowers in the mouth", # edit_prompt
|
| 333 |
+
0, # seed
|
| 334 |
+
True, # randomize_seed
|
| 335 |
+
30, # num_inference_steps
|
| 336 |
+
30, # max_steps
|
| 337 |
+
1, # learning_rate
|
| 338 |
+
5, # max_source_steps
|
| 339 |
+
3, # optimization_steps
|
| 340 |
+
4.5, # true_cfg
|
| 341 |
+
],
|
| 342 |
+
[
|
| 343 |
+
"Inpainting", # mode
|
| 344 |
+
"./saved_results/20241127_025429/input.png", # image with mask
|
| 345 |
+
"./saved_results/20241127_025429/mask.png",
|
| 346 |
+
"./saved_results/20241127_025429/output.png",
|
| 347 |
+
"A building with \"ASU\" written on it.", # prompt
|
| 348 |
+
"", # edit_prompt
|
| 349 |
+
52, # seed
|
| 350 |
+
False, # randomize_seed
|
| 351 |
+
30, # num_inference_steps
|
| 352 |
+
30, # max_steps
|
| 353 |
+
1, # learning_rate
|
| 354 |
+
20, # max_source_steps
|
| 355 |
+
10, # optimization_steps
|
| 356 |
+
2, # true_cfg
|
| 357 |
+
],
|
| 358 |
+
[
|
| 359 |
+
"Inpainting", # mode
|
| 360 |
+
"./saved_results/20241126_222257/input.png", # image with mask
|
| 361 |
+
"./saved_results/20241126_222257/mask.png",
|
| 362 |
+
"./saved_results/20241126_222257/output.png",
|
| 363 |
+
"A cute pig with big eyes", # prompt
|
| 364 |
+
"", # edit_prompt
|
| 365 |
+
0, # seed
|
| 366 |
+
True, # randomize_seed
|
| 367 |
+
30, # num_inference_steps
|
| 368 |
+
20, # max_steps
|
| 369 |
+
1, # learning_rate
|
| 370 |
+
20, # max_source_steps
|
| 371 |
+
5, # optimization_steps
|
| 372 |
+
2, # true_cfg
|
| 373 |
+
],
|
| 374 |
+
[
|
| 375 |
+
"Editing", # mode
|
| 376 |
+
"./saved_results/20241126_222522/input.png", # image with mask
|
| 377 |
+
"./saved_results/20241126_222522/mask.png",
|
| 378 |
+
"./saved_results/20241126_222522/output.png",
|
| 379 |
+
"A cute rabbit with big eyes", # prompt
|
| 380 |
+
"A cute pig with big eyes", # edit_prompt
|
| 381 |
+
0, # seed
|
| 382 |
+
True, # randomize_seed
|
| 383 |
+
30, # num_inference_steps
|
| 384 |
+
20, # max_steps
|
| 385 |
+
0.4, # learning_rate
|
| 386 |
+
5, # max_source_steps
|
| 387 |
+
5, # optimization_steps
|
| 388 |
+
4.5, # true_cfg
|
| 389 |
+
],
|
| 390 |
+
[
|
| 391 |
+
"Editing", # mode
|
| 392 |
+
"./saved_results/20241126_223719/input.png", # image with mask
|
| 393 |
+
"./saved_results/20241126_223719/mask.png",
|
| 394 |
+
"./saved_results/20241126_223719/output.png",
|
| 395 |
+
"a cat", # prompt
|
| 396 |
+
"a tiger", # edit_prompt
|
| 397 |
+
0, # seed
|
| 398 |
+
True, # randomize_seed
|
| 399 |
+
30, # num_inference_steps
|
| 400 |
+
30, # max_steps
|
| 401 |
+
0.6, # learning_rate
|
| 402 |
+
10, # max_source_steps
|
| 403 |
+
5, # optimization_steps
|
| 404 |
+
4.5, # true_cfg
|
| 405 |
+
],
|
| 406 |
+
],
|
| 407 |
+
inputs=[
|
| 408 |
+
mode,
|
| 409 |
+
image_input,
|
| 410 |
+
mask_input,
|
| 411 |
+
output_image,
|
| 412 |
+
prompt,
|
| 413 |
+
edit_prompt,
|
| 414 |
+
seed,
|
| 415 |
+
randomize_seed,
|
| 416 |
+
num_inference_steps,
|
| 417 |
+
max_steps,
|
| 418 |
+
learning_rate,
|
| 419 |
+
max_source_steps,
|
| 420 |
+
optimization_steps,
|
| 421 |
+
true_cfg,
|
| 422 |
+
],
|
| 423 |
+
# outputs=[output_image],
|
| 424 |
+
# fn=run_and_update_status,
|
| 425 |
+
# cache_examples=True,
|
| 426 |
+
)
|
| 427 |
+
demo.launch()
|
assets/dog.webp
ADDED
|
assets/vulcano.jpg
ADDED
|
assets/vulcano_mask.webp
ADDED
|
fluxcombined.py
ADDED
|
@@ -0,0 +1,1607 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
| 21 |
+
|
| 22 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 23 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
| 24 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 25 |
+
from diffusers.models.transformers import FluxTransformer2DModel
|
| 26 |
+
from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 27 |
+
from diffusers.utils import (
|
| 28 |
+
USE_PEFT_BACKEND,
|
| 29 |
+
is_torch_xla_available,
|
| 30 |
+
logging,
|
| 31 |
+
replace_example_docstring,
|
| 32 |
+
scale_lora_layers,
|
| 33 |
+
unscale_lora_layers,
|
| 34 |
+
)
|
| 35 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 36 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 37 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 38 |
+
|
| 39 |
+
import os
|
| 40 |
+
import torch
|
| 41 |
+
import torch.nn as nn
|
| 42 |
+
from os.path import expanduser # pylint: disable=import-outside-toplevel
|
| 43 |
+
from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel
|
| 44 |
+
from torchvision import transforms as TF
|
| 45 |
+
|
| 46 |
+
if is_torch_xla_available():
|
| 47 |
+
import torch_xla.core.xla_model as xm
|
| 48 |
+
|
| 49 |
+
XLA_AVAILABLE = True
|
| 50 |
+
else:
|
| 51 |
+
XLA_AVAILABLE = False
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 55 |
+
|
| 56 |
+
EXAMPLE_DOC_STRING = """
|
| 57 |
+
Examples:
|
| 58 |
+
```py
|
| 59 |
+
>>> import torch
|
| 60 |
+
>>> from diffusers import FluxPipeline
|
| 61 |
+
|
| 62 |
+
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
| 63 |
+
>>> pipe.to("cuda")
|
| 64 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
| 65 |
+
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
| 66 |
+
>>> # Refer to the pipeline documentation for more details.
|
| 67 |
+
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
|
| 68 |
+
>>> image.save("flux.png")
|
| 69 |
+
```
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
import sys
|
| 73 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
|
| 74 |
+
|
| 75 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 76 |
+
|
| 77 |
+
def retrieve_latents(
|
| 78 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
| 79 |
+
):
|
| 80 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 81 |
+
return encoder_output.latent_dist.sample(generator)
|
| 82 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 83 |
+
return encoder_output.latent_dist.mode()
|
| 84 |
+
elif hasattr(encoder_output, "latents"):
|
| 85 |
+
return encoder_output.latents
|
| 86 |
+
else:
|
| 87 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def calculate_shift(
|
| 91 |
+
image_seq_len,
|
| 92 |
+
base_seq_len: int = 256,
|
| 93 |
+
max_seq_len: int = 4096,
|
| 94 |
+
base_shift: float = 0.5,
|
| 95 |
+
max_shift: float = 1.16,
|
| 96 |
+
):
|
| 97 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 98 |
+
b = base_shift - m * base_seq_len
|
| 99 |
+
mu = image_seq_len * m + b
|
| 100 |
+
return mu
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 104 |
+
def retrieve_timesteps(
|
| 105 |
+
scheduler,
|
| 106 |
+
num_inference_steps: Optional[int] = None,
|
| 107 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 108 |
+
timesteps: Optional[List[int]] = None,
|
| 109 |
+
sigmas: Optional[List[float]] = None,
|
| 110 |
+
**kwargs,
|
| 111 |
+
):
|
| 112 |
+
"""
|
| 113 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 114 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
scheduler (`SchedulerMixin`):
|
| 118 |
+
The scheduler to get timesteps from.
|
| 119 |
+
num_inference_steps (`int`):
|
| 120 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 121 |
+
must be `None`.
|
| 122 |
+
device (`str` or `torch.device`, *optional*):
|
| 123 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 124 |
+
timesteps (`List[int]`, *optional*):
|
| 125 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 126 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 127 |
+
sigmas (`List[float]`, *optional*):
|
| 128 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 129 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 130 |
+
|
| 131 |
+
Returns:
|
| 132 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 133 |
+
second element is the number of inference steps.
|
| 134 |
+
"""
|
| 135 |
+
if timesteps is not None and sigmas is not None:
|
| 136 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 137 |
+
if timesteps is not None:
|
| 138 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 139 |
+
if not accepts_timesteps:
|
| 140 |
+
raise ValueError(
|
| 141 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 142 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 143 |
+
)
|
| 144 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 145 |
+
timesteps = scheduler.timesteps
|
| 146 |
+
num_inference_steps = len(timesteps)
|
| 147 |
+
elif sigmas is not None:
|
| 148 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 149 |
+
if not accept_sigmas:
|
| 150 |
+
raise ValueError(
|
| 151 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 152 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 153 |
+
)
|
| 154 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 155 |
+
timesteps = scheduler.timesteps
|
| 156 |
+
num_inference_steps = len(timesteps)
|
| 157 |
+
else:
|
| 158 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 159 |
+
timesteps = scheduler.timesteps
|
| 160 |
+
return timesteps, num_inference_steps
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
|
| 164 |
+
r"""
|
| 165 |
+
The Flux pipeline for text-to-image generation.
|
| 166 |
+
|
| 167 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
transformer ([`FluxTransformer2DModel`]):
|
| 171 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
| 172 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
| 173 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 174 |
+
vae ([`AutoencoderKL`]):
|
| 175 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 176 |
+
text_encoder ([`CLIPTextModel`]):
|
| 177 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 178 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 179 |
+
text_encoder_2 ([`T5EncoderModel`]):
|
| 180 |
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
| 181 |
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
| 182 |
+
tokenizer (`CLIPTokenizer`):
|
| 183 |
+
Tokenizer of class
|
| 184 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 185 |
+
tokenizer_2 (`T5TokenizerFast`):
|
| 186 |
+
Second Tokenizer of class
|
| 187 |
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
| 188 |
+
"""
|
| 189 |
+
|
| 190 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
| 191 |
+
_optional_components = []
|
| 192 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
| 193 |
+
|
| 194 |
+
def __init__(
|
| 195 |
+
self,
|
| 196 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 197 |
+
vae: AutoencoderKL,
|
| 198 |
+
text_encoder: CLIPTextModel,
|
| 199 |
+
tokenizer: CLIPTokenizer,
|
| 200 |
+
text_encoder_2: T5EncoderModel,
|
| 201 |
+
tokenizer_2: T5TokenizerFast,
|
| 202 |
+
transformer: FluxTransformer2DModel,
|
| 203 |
+
):
|
| 204 |
+
super().__init__()
|
| 205 |
+
|
| 206 |
+
self.register_modules(
|
| 207 |
+
vae=vae,
|
| 208 |
+
text_encoder=text_encoder,
|
| 209 |
+
text_encoder_2=text_encoder_2,
|
| 210 |
+
tokenizer=tokenizer,
|
| 211 |
+
tokenizer_2=tokenizer_2,
|
| 212 |
+
transformer=transformer,
|
| 213 |
+
scheduler=scheduler,
|
| 214 |
+
)
|
| 215 |
+
self.vae_scale_factor = (
|
| 216 |
+
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
| 217 |
+
)
|
| 218 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 219 |
+
self.tokenizer_max_length = (
|
| 220 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
| 221 |
+
)
|
| 222 |
+
self.default_sample_size = 64
|
| 223 |
+
|
| 224 |
+
def _get_t5_prompt_embeds(
|
| 225 |
+
self,
|
| 226 |
+
prompt: Union[str, List[str]] = None,
|
| 227 |
+
num_images_per_prompt: int = 1,
|
| 228 |
+
max_sequence_length: int = 512,
|
| 229 |
+
device: Optional[torch.device] = None,
|
| 230 |
+
dtype: Optional[torch.dtype] = None,
|
| 231 |
+
):
|
| 232 |
+
device = device or self._execution_device
|
| 233 |
+
dtype = dtype or self.text_encoder.dtype
|
| 234 |
+
|
| 235 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 236 |
+
batch_size = len(prompt)
|
| 237 |
+
|
| 238 |
+
text_inputs = self.tokenizer_2(
|
| 239 |
+
prompt,
|
| 240 |
+
padding="max_length",
|
| 241 |
+
max_length=max_sequence_length,
|
| 242 |
+
truncation=True,
|
| 243 |
+
return_length=False,
|
| 244 |
+
return_overflowing_tokens=False,
|
| 245 |
+
return_tensors="pt",
|
| 246 |
+
)
|
| 247 |
+
text_input_ids = text_inputs.input_ids
|
| 248 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
| 249 |
+
|
| 250 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 251 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 252 |
+
logger.warning(
|
| 253 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 254 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
| 258 |
+
|
| 259 |
+
dtype = self.text_encoder_2.dtype
|
| 260 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 261 |
+
|
| 262 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 263 |
+
|
| 264 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 265 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 266 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 267 |
+
|
| 268 |
+
return prompt_embeds
|
| 269 |
+
|
| 270 |
+
def _get_clip_prompt_embeds(
|
| 271 |
+
self,
|
| 272 |
+
prompt: Union[str, List[str]],
|
| 273 |
+
num_images_per_prompt: int = 1,
|
| 274 |
+
device: Optional[torch.device] = None,
|
| 275 |
+
):
|
| 276 |
+
device = device or self._execution_device
|
| 277 |
+
|
| 278 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 279 |
+
batch_size = len(prompt)
|
| 280 |
+
|
| 281 |
+
text_inputs = self.tokenizer(
|
| 282 |
+
prompt,
|
| 283 |
+
padding="max_length",
|
| 284 |
+
max_length=self.tokenizer_max_length,
|
| 285 |
+
truncation=True,
|
| 286 |
+
return_overflowing_tokens=False,
|
| 287 |
+
return_length=False,
|
| 288 |
+
return_tensors="pt",
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
text_input_ids = text_inputs.input_ids
|
| 292 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 293 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 294 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 295 |
+
logger.warning(
|
| 296 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 297 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 298 |
+
)
|
| 299 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
| 300 |
+
|
| 301 |
+
# Use pooled output of CLIPTextModel
|
| 302 |
+
prompt_embeds = prompt_embeds.pooler_output
|
| 303 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 304 |
+
|
| 305 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 306 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
| 307 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 308 |
+
|
| 309 |
+
return prompt_embeds
|
| 310 |
+
|
| 311 |
+
def encode_prompt(
|
| 312 |
+
self,
|
| 313 |
+
prompt: Union[str, List[str]],
|
| 314 |
+
prompt_2: Union[str, List[str]],
|
| 315 |
+
device: Optional[torch.device] = None,
|
| 316 |
+
num_images_per_prompt: int = 1,
|
| 317 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 318 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 319 |
+
max_sequence_length: int = 512,
|
| 320 |
+
lora_scale: Optional[float] = None,
|
| 321 |
+
):
|
| 322 |
+
r"""
|
| 323 |
+
|
| 324 |
+
Args:
|
| 325 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 326 |
+
prompt to be encoded
|
| 327 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 328 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 329 |
+
used in all text-encoders
|
| 330 |
+
device: (`torch.device`):
|
| 331 |
+
torch device
|
| 332 |
+
num_images_per_prompt (`int`):
|
| 333 |
+
number of images that should be generated per prompt
|
| 334 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 335 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 336 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 337 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 338 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 339 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 340 |
+
lora_scale (`float`, *optional*):
|
| 341 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 342 |
+
"""
|
| 343 |
+
device = device or self._execution_device
|
| 344 |
+
|
| 345 |
+
# set lora scale so that monkey patched LoRA
|
| 346 |
+
# function of text encoder can correctly access it
|
| 347 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
| 348 |
+
self._lora_scale = lora_scale
|
| 349 |
+
|
| 350 |
+
# dynamically adjust the LoRA scale
|
| 351 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 352 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 353 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 354 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 355 |
+
|
| 356 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 357 |
+
if prompt is not None:
|
| 358 |
+
batch_size = len(prompt)
|
| 359 |
+
else:
|
| 360 |
+
batch_size = prompt_embeds.shape[0]
|
| 361 |
+
|
| 362 |
+
if prompt_embeds is None:
|
| 363 |
+
prompt_2 = prompt_2 or prompt
|
| 364 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 365 |
+
|
| 366 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
| 367 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
| 368 |
+
prompt=prompt,
|
| 369 |
+
device=device,
|
| 370 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 371 |
+
)
|
| 372 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
| 373 |
+
prompt=prompt_2,
|
| 374 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 375 |
+
max_sequence_length=max_sequence_length,
|
| 376 |
+
device=device,
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
if self.text_encoder is not None:
|
| 380 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 381 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 382 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 383 |
+
|
| 384 |
+
if self.text_encoder_2 is not None:
|
| 385 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 386 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 387 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 388 |
+
|
| 389 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
| 390 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
| 391 |
+
# text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
|
| 392 |
+
|
| 393 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
| 394 |
+
|
| 395 |
+
def encode_prompt_edit(
|
| 396 |
+
self,
|
| 397 |
+
prompt: Union[str, List[str]],
|
| 398 |
+
prompt_2: Union[str, List[str]],
|
| 399 |
+
negative_prompt: Union[str, List[str]] = None,
|
| 400 |
+
negative_prompt_2: Union[str, List[str]] = None,
|
| 401 |
+
device: Optional[torch.device] = None,
|
| 402 |
+
num_images_per_prompt: int = 1,
|
| 403 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 404 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 405 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 406 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 407 |
+
max_sequence_length: int = 512,
|
| 408 |
+
lora_scale: Optional[float] = None,
|
| 409 |
+
do_true_cfg: bool = False,
|
| 410 |
+
):
|
| 411 |
+
device = device or self._execution_device
|
| 412 |
+
|
| 413 |
+
# Set LoRA scale if applicable
|
| 414 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
| 415 |
+
self._lora_scale = lora_scale
|
| 416 |
+
|
| 417 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 418 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 419 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 420 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 421 |
+
|
| 422 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 423 |
+
batch_size = len(prompt)
|
| 424 |
+
|
| 425 |
+
if do_true_cfg and negative_prompt is not None:
|
| 426 |
+
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
| 427 |
+
negative_batch_size = len(negative_prompt)
|
| 428 |
+
|
| 429 |
+
if negative_batch_size != batch_size:
|
| 430 |
+
raise ValueError(
|
| 431 |
+
f"Negative prompt batch size ({negative_batch_size}) does not match prompt batch size ({batch_size})"
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# Concatenate prompts
|
| 435 |
+
prompts = prompt + negative_prompt
|
| 436 |
+
prompts_2 = (
|
| 437 |
+
prompt_2 + negative_prompt_2 if prompt_2 is not None and negative_prompt_2 is not None else None
|
| 438 |
+
)
|
| 439 |
+
else:
|
| 440 |
+
prompts = prompt
|
| 441 |
+
prompts_2 = prompt_2
|
| 442 |
+
|
| 443 |
+
if prompt_embeds is None:
|
| 444 |
+
if prompts_2 is None:
|
| 445 |
+
prompts_2 = prompts
|
| 446 |
+
|
| 447 |
+
# Get pooled prompt embeddings from CLIPTextModel
|
| 448 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
| 449 |
+
prompt=prompts,
|
| 450 |
+
device=device,
|
| 451 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 452 |
+
)
|
| 453 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
| 454 |
+
prompt=prompts_2,
|
| 455 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 456 |
+
max_sequence_length=max_sequence_length,
|
| 457 |
+
device=device,
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
if do_true_cfg and negative_prompt is not None:
|
| 461 |
+
# Split embeddings back into positive and negative parts
|
| 462 |
+
total_batch_size = batch_size * num_images_per_prompt
|
| 463 |
+
positive_indices = slice(0, total_batch_size)
|
| 464 |
+
negative_indices = slice(total_batch_size, 2 * total_batch_size)
|
| 465 |
+
|
| 466 |
+
positive_pooled_prompt_embeds = pooled_prompt_embeds[positive_indices]
|
| 467 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[negative_indices]
|
| 468 |
+
|
| 469 |
+
positive_prompt_embeds = prompt_embeds[positive_indices]
|
| 470 |
+
negative_prompt_embeds = prompt_embeds[negative_indices]
|
| 471 |
+
|
| 472 |
+
pooled_prompt_embeds = positive_pooled_prompt_embeds
|
| 473 |
+
prompt_embeds = positive_prompt_embeds
|
| 474 |
+
|
| 475 |
+
# Unscale LoRA layers
|
| 476 |
+
if self.text_encoder is not None:
|
| 477 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 478 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 479 |
+
|
| 480 |
+
if self.text_encoder_2 is not None:
|
| 481 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 482 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 483 |
+
|
| 484 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
| 485 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
| 486 |
+
|
| 487 |
+
if do_true_cfg and negative_prompt is not None:
|
| 488 |
+
return (
|
| 489 |
+
prompt_embeds,
|
| 490 |
+
pooled_prompt_embeds,
|
| 491 |
+
text_ids,
|
| 492 |
+
negative_prompt_embeds,
|
| 493 |
+
negative_pooled_prompt_embeds,
|
| 494 |
+
)
|
| 495 |
+
else:
|
| 496 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids, None, None
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
def check_inputs(
|
| 500 |
+
self,
|
| 501 |
+
prompt,
|
| 502 |
+
prompt_2,
|
| 503 |
+
height,
|
| 504 |
+
width,
|
| 505 |
+
prompt_embeds=None,
|
| 506 |
+
pooled_prompt_embeds=None,
|
| 507 |
+
callback_on_step_end_tensor_inputs=None,
|
| 508 |
+
max_sequence_length=None,
|
| 509 |
+
):
|
| 510 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 511 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 512 |
+
|
| 513 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 514 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 515 |
+
):
|
| 516 |
+
raise ValueError(
|
| 517 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
if prompt is not None and prompt_embeds is not None:
|
| 521 |
+
raise ValueError(
|
| 522 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 523 |
+
" only forward one of the two."
|
| 524 |
+
)
|
| 525 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 526 |
+
raise ValueError(
|
| 527 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 528 |
+
" only forward one of the two."
|
| 529 |
+
)
|
| 530 |
+
elif prompt is None and prompt_embeds is None:
|
| 531 |
+
raise ValueError(
|
| 532 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 533 |
+
)
|
| 534 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 535 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 536 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 537 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 538 |
+
|
| 539 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 540 |
+
raise ValueError(
|
| 541 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 545 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
| 546 |
+
|
| 547 |
+
@staticmethod
|
| 548 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 549 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 550 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 551 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 552 |
+
|
| 553 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 554 |
+
|
| 555 |
+
# latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
|
| 556 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 557 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 561 |
+
|
| 562 |
+
@staticmethod
|
| 563 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
| 564 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
| 565 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
| 566 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
| 567 |
+
|
| 568 |
+
return latents
|
| 569 |
+
|
| 570 |
+
@staticmethod
|
| 571 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
| 572 |
+
batch_size, num_patches, channels = latents.shape
|
| 573 |
+
|
| 574 |
+
height = height // vae_scale_factor
|
| 575 |
+
width = width // vae_scale_factor
|
| 576 |
+
|
| 577 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
| 578 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
| 579 |
+
|
| 580 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
| 581 |
+
|
| 582 |
+
return latents
|
| 583 |
+
|
| 584 |
+
def prepare_latents(
|
| 585 |
+
self,
|
| 586 |
+
batch_size,
|
| 587 |
+
num_channels_latents,
|
| 588 |
+
height,
|
| 589 |
+
width,
|
| 590 |
+
dtype,
|
| 591 |
+
device,
|
| 592 |
+
generator,
|
| 593 |
+
latents=None,
|
| 594 |
+
):
|
| 595 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
| 596 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
| 597 |
+
|
| 598 |
+
shape = (batch_size, num_channels_latents, height, width)
|
| 599 |
+
|
| 600 |
+
if latents is not None:
|
| 601 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
| 602 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
| 603 |
+
|
| 604 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 605 |
+
raise ValueError(
|
| 606 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 607 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 611 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
| 612 |
+
|
| 613 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
| 614 |
+
|
| 615 |
+
return latents, latent_image_ids
|
| 616 |
+
|
| 617 |
+
@property
|
| 618 |
+
def guidance_scale(self):
|
| 619 |
+
return self._guidance_scale
|
| 620 |
+
|
| 621 |
+
@property
|
| 622 |
+
def joint_attention_kwargs(self):
|
| 623 |
+
return self._joint_attention_kwargs
|
| 624 |
+
|
| 625 |
+
@property
|
| 626 |
+
def num_timesteps(self):
|
| 627 |
+
return self._num_timesteps
|
| 628 |
+
|
| 629 |
+
@property
|
| 630 |
+
def interrupt(self):
|
| 631 |
+
return self._interrupt
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
def prepare_mask_latents(
|
| 635 |
+
self,
|
| 636 |
+
mask,
|
| 637 |
+
masked_image,
|
| 638 |
+
batch_size,
|
| 639 |
+
num_channels_latents,
|
| 640 |
+
num_images_per_prompt,
|
| 641 |
+
height,
|
| 642 |
+
width,
|
| 643 |
+
dtype,
|
| 644 |
+
device,
|
| 645 |
+
generator,
|
| 646 |
+
):
|
| 647 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
| 648 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
| 649 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
| 650 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
| 651 |
+
# and half precision
|
| 652 |
+
mask = torch.nn.functional.interpolate(mask, size=(height, width))
|
| 653 |
+
mask = mask.to(device=device, dtype=dtype)
|
| 654 |
+
|
| 655 |
+
batch_size = batch_size * num_images_per_prompt
|
| 656 |
+
|
| 657 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
| 658 |
+
|
| 659 |
+
if masked_image.shape[1] == 16:
|
| 660 |
+
masked_image_latents = masked_image
|
| 661 |
+
else:
|
| 662 |
+
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
| 663 |
+
|
| 664 |
+
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 665 |
+
|
| 666 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
| 667 |
+
if mask.shape[0] < batch_size:
|
| 668 |
+
if not batch_size % mask.shape[0] == 0:
|
| 669 |
+
raise ValueError(
|
| 670 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
| 671 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
| 672 |
+
" of masks that you pass is divisible by the total requested batch size."
|
| 673 |
+
)
|
| 674 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
| 675 |
+
if masked_image_latents.shape[0] < batch_size:
|
| 676 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
| 677 |
+
raise ValueError(
|
| 678 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
| 679 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 680 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 681 |
+
)
|
| 682 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
| 683 |
+
|
| 684 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
| 685 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
| 686 |
+
|
| 687 |
+
masked_image_latents = self._pack_latents(
|
| 688 |
+
masked_image_latents,
|
| 689 |
+
batch_size,
|
| 690 |
+
num_channels_latents,
|
| 691 |
+
height,
|
| 692 |
+
width,
|
| 693 |
+
)
|
| 694 |
+
mask = self._pack_latents(
|
| 695 |
+
mask.repeat(1, num_channels_latents, 1, 1),
|
| 696 |
+
batch_size,
|
| 697 |
+
num_channels_latents,
|
| 698 |
+
height,
|
| 699 |
+
width,
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
return mask, masked_image_latents
|
| 703 |
+
|
| 704 |
+
@torch.no_grad()
|
| 705 |
+
def inpaint(
|
| 706 |
+
self,
|
| 707 |
+
prompt: Union[str, List[str]] = None,
|
| 708 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 709 |
+
height: Optional[int] = None,
|
| 710 |
+
width: Optional[int] = None,
|
| 711 |
+
num_inference_steps: int = 28,
|
| 712 |
+
timesteps: List[int] = None,
|
| 713 |
+
guidance_scale: float = 7.0,
|
| 714 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 715 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 716 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 717 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 718 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 719 |
+
output_type: Optional[str] = "pil",
|
| 720 |
+
return_dict: bool = True,
|
| 721 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 722 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 723 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 724 |
+
max_sequence_length: int = 512,
|
| 725 |
+
optimization_steps: int = 3,
|
| 726 |
+
learning_rate: float = 0.8,
|
| 727 |
+
max_steps: int = 5,
|
| 728 |
+
input_image = None,
|
| 729 |
+
save_masked_image = False,
|
| 730 |
+
output_path="",
|
| 731 |
+
mask_image = None,
|
| 732 |
+
):
|
| 733 |
+
|
| 734 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 735 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 736 |
+
|
| 737 |
+
# 1. Check inputs. Raise error if not correct
|
| 738 |
+
self.check_inputs(
|
| 739 |
+
prompt,
|
| 740 |
+
prompt_2,
|
| 741 |
+
height,
|
| 742 |
+
width,
|
| 743 |
+
prompt_embeds=prompt_embeds,
|
| 744 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 745 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 746 |
+
max_sequence_length=max_sequence_length,
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
self._guidance_scale = guidance_scale
|
| 750 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 751 |
+
self._interrupt = False
|
| 752 |
+
|
| 753 |
+
# 2. Define call parameters
|
| 754 |
+
if prompt is not None and isinstance(prompt, str):
|
| 755 |
+
batch_size = 1
|
| 756 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 757 |
+
batch_size = len(prompt)
|
| 758 |
+
else:
|
| 759 |
+
batch_size = prompt_embeds.shape[0]
|
| 760 |
+
|
| 761 |
+
device = self._execution_device
|
| 762 |
+
|
| 763 |
+
lora_scale = (
|
| 764 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 765 |
+
)
|
| 766 |
+
(
|
| 767 |
+
prompt_embeds,
|
| 768 |
+
pooled_prompt_embeds,
|
| 769 |
+
text_ids,
|
| 770 |
+
) = self.encode_prompt(
|
| 771 |
+
prompt=prompt,
|
| 772 |
+
prompt_2=prompt_2,
|
| 773 |
+
prompt_embeds=prompt_embeds,
|
| 774 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 775 |
+
device=device,
|
| 776 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 777 |
+
max_sequence_length=max_sequence_length,
|
| 778 |
+
lora_scale=lora_scale,
|
| 779 |
+
)
|
| 780 |
+
|
| 781 |
+
# 4. Prepare latent variables
|
| 782 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 783 |
+
random_latents, latent_image_ids = self.prepare_latents(
|
| 784 |
+
batch_size * num_images_per_prompt,
|
| 785 |
+
num_channels_latents,
|
| 786 |
+
height,
|
| 787 |
+
width,
|
| 788 |
+
prompt_embeds.dtype,
|
| 789 |
+
device,
|
| 790 |
+
generator,
|
| 791 |
+
latents,
|
| 792 |
+
)
|
| 793 |
+
|
| 794 |
+
# 5. Prepare timesteps
|
| 795 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 796 |
+
image_seq_len = random_latents.shape[1]
|
| 797 |
+
mu = calculate_shift(
|
| 798 |
+
image_seq_len,
|
| 799 |
+
self.scheduler.config.base_image_seq_len,
|
| 800 |
+
self.scheduler.config.max_image_seq_len,
|
| 801 |
+
self.scheduler.config.base_shift,
|
| 802 |
+
self.scheduler.config.max_shift,
|
| 803 |
+
)
|
| 804 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 805 |
+
self.scheduler,
|
| 806 |
+
num_inference_steps,
|
| 807 |
+
device,
|
| 808 |
+
timesteps,
|
| 809 |
+
sigmas,
|
| 810 |
+
mu=mu,
|
| 811 |
+
)
|
| 812 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 813 |
+
self._num_timesteps = len(timesteps)
|
| 814 |
+
|
| 815 |
+
# 4. Preprocess image
|
| 816 |
+
# Preprocess mask image
|
| 817 |
+
mask_image = mask_image.convert("L")
|
| 818 |
+
mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype)
|
| 819 |
+
mask = TF.Resize(input_image.size, interpolation=TF.InterpolationMode.NEAREST)(mask)
|
| 820 |
+
mask = (mask > 0.5)
|
| 821 |
+
mask = ~mask
|
| 822 |
+
|
| 823 |
+
# # Convert input image to tensor and apply mask
|
| 824 |
+
# input_image = TF.ToTensor()(input_image).to(device=device, dtype=self.transformer.dtype)
|
| 825 |
+
# input_image = input_image * mask.float().expand_as(input_image)
|
| 826 |
+
# input_image = TF.ToPILImage()(input_image.cpu())
|
| 827 |
+
|
| 828 |
+
image = self.image_processor.preprocess(input_image)
|
| 829 |
+
image = image.to(device=device, dtype=self.transformer.dtype)
|
| 830 |
+
latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
h, w = latents.shape[2], latents.shape[3]
|
| 834 |
+
mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype)
|
| 835 |
+
mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask)
|
| 836 |
+
|
| 837 |
+
# Slightly dilate the mask to increase coverage
|
| 838 |
+
kernel_size = 1 # Decreased from 3 to 2
|
| 839 |
+
kernel = torch.ones((1, 1, kernel_size, kernel_size), device=device)
|
| 840 |
+
mask = torch.nn.functional.conv2d(
|
| 841 |
+
mask.unsqueeze(0),
|
| 842 |
+
kernel,
|
| 843 |
+
padding=0
|
| 844 |
+
).squeeze(0)
|
| 845 |
+
mask = torch.clamp(mask, 0, 1)
|
| 846 |
+
|
| 847 |
+
mask = (mask > 0.1).float()
|
| 848 |
+
|
| 849 |
+
# Remove extra channel dimension if present
|
| 850 |
+
if len(mask.shape) == 3 and mask.shape[0] == 1:
|
| 851 |
+
mask = mask.squeeze(0)
|
| 852 |
+
|
| 853 |
+
bool_mask = mask.bool().unsqueeze(0).unsqueeze(0).expand_as(latents)
|
| 854 |
+
mask=~bool_mask
|
| 855 |
+
|
| 856 |
+
print(mask.shape, latents.shape)
|
| 857 |
+
|
| 858 |
+
masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents
|
| 859 |
+
masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
| 860 |
+
|
| 861 |
+
mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
| 862 |
+
|
| 863 |
+
# Decode and save the masked image
|
| 864 |
+
if save_masked_image:
|
| 865 |
+
with torch.no_grad():
|
| 866 |
+
save_masked_latents = self._unpack_latents(masked_latents, 1024, 1024, self.vae_scale_factor)
|
| 867 |
+
save_masked_latents = (save_masked_latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 868 |
+
mask_image = self.vae.decode(save_masked_latents, return_dict=False)[0]
|
| 869 |
+
mask_image = self.image_processor.postprocess(mask_image, output_type="pil")
|
| 870 |
+
mask_image_path = output_path.replace(".png", "_masked.png")
|
| 871 |
+
mask_image[0].save(mask_image_path)
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
# initialize the random noise for denoising
|
| 875 |
+
latents = random_latents.clone().detach()
|
| 876 |
+
|
| 877 |
+
self.vae = self.vae.to(torch.float32)
|
| 878 |
+
|
| 879 |
+
# 9. Denoising loop
|
| 880 |
+
self.transformer.eval()
|
| 881 |
+
self.vae.eval()
|
| 882 |
+
|
| 883 |
+
# 6. Denoising loop
|
| 884 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 885 |
+
for i, t in enumerate(timesteps):
|
| 886 |
+
if self.interrupt:
|
| 887 |
+
continue
|
| 888 |
+
|
| 889 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 890 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 891 |
+
|
| 892 |
+
# handle guidance
|
| 893 |
+
if self.transformer.config.guidance_embeds:
|
| 894 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
| 895 |
+
guidance = guidance.expand(latents.shape[0])
|
| 896 |
+
else:
|
| 897 |
+
guidance = None
|
| 898 |
+
|
| 899 |
+
noise_pred = self.transformer(
|
| 900 |
+
hidden_states=latents,
|
| 901 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
| 902 |
+
timestep=timestep / 1000,
|
| 903 |
+
guidance=guidance,
|
| 904 |
+
pooled_projections=pooled_prompt_embeds,
|
| 905 |
+
encoder_hidden_states=prompt_embeds,
|
| 906 |
+
txt_ids=text_ids,
|
| 907 |
+
img_ids=latent_image_ids,
|
| 908 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 909 |
+
return_dict=False,
|
| 910 |
+
)[0]
|
| 911 |
+
|
| 912 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 913 |
+
latents_dtype = latents.dtype
|
| 914 |
+
|
| 915 |
+
# perform CG
|
| 916 |
+
if i < max_steps:
|
| 917 |
+
opt_latents = latents.detach().clone()
|
| 918 |
+
with torch.enable_grad():
|
| 919 |
+
opt_latents = opt_latents.detach().requires_grad_()
|
| 920 |
+
opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True)
|
| 921 |
+
# optimizer = torch.optim.Adam([opt_latents], lr=learning_rate)
|
| 922 |
+
|
| 923 |
+
for _ in range(optimization_steps):
|
| 924 |
+
latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0]
|
| 925 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean()
|
| 926 |
+
|
| 927 |
+
grad = torch.autograd.grad(loss, opt_latents)[0]
|
| 928 |
+
# grad = torch.clamp(grad, -0.5, 0.5)
|
| 929 |
+
opt_latents = opt_latents - learning_rate * grad
|
| 930 |
+
|
| 931 |
+
latents = opt_latents.detach().clone()
|
| 932 |
+
|
| 933 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 934 |
+
|
| 935 |
+
if latents.dtype != latents_dtype:
|
| 936 |
+
if torch.backends.mps.is_available():
|
| 937 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 938 |
+
latents = latents.to(latents_dtype)
|
| 939 |
+
|
| 940 |
+
if callback_on_step_end is not None:
|
| 941 |
+
callback_kwargs = {}
|
| 942 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 943 |
+
callback_kwargs[k] = locals()[k]
|
| 944 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 945 |
+
|
| 946 |
+
latents = callback_outputs.pop("latents", latents)
|
| 947 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 948 |
+
|
| 949 |
+
# call the callback, if provided
|
| 950 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 951 |
+
progress_bar.update()
|
| 952 |
+
|
| 953 |
+
if XLA_AVAILABLE:
|
| 954 |
+
xm.mark_step()
|
| 955 |
+
|
| 956 |
+
if output_type == "latent":
|
| 957 |
+
image = latents
|
| 958 |
+
|
| 959 |
+
else:
|
| 960 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 961 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 962 |
+
image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0]
|
| 963 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 964 |
+
|
| 965 |
+
# Offload all models
|
| 966 |
+
self.maybe_free_model_hooks()
|
| 967 |
+
|
| 968 |
+
if not return_dict:
|
| 969 |
+
return (image,)
|
| 970 |
+
|
| 971 |
+
return FluxPipelineOutput(images=image)
|
| 972 |
+
|
| 973 |
+
def get_diff_image(self, latents):
|
| 974 |
+
latents = self._unpack_latents(latents, 1024, 1024, self.vae_scale_factor)
|
| 975 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 976 |
+
image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0]
|
| 977 |
+
image = self.image_processor.postprocess(image, output_type="pt")
|
| 978 |
+
return image
|
| 979 |
+
|
| 980 |
+
def load_and_preprocess_image(self, image_path, custom_image_processor, device):
|
| 981 |
+
from diffusers.utils import load_image
|
| 982 |
+
img = load_image(image_path)
|
| 983 |
+
img = img.resize((512, 512))
|
| 984 |
+
return custom_image_processor(img).unsqueeze(0).to(device)
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
@torch.no_grad()
|
| 988 |
+
def edit(
|
| 989 |
+
self,
|
| 990 |
+
prompt: Union[str, List[str]] = None,
|
| 991 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 992 |
+
negative_prompt: Union[str, List[str]] = None, #
|
| 993 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 994 |
+
true_cfg: float = 1.0, #
|
| 995 |
+
height: Optional[int] = None,
|
| 996 |
+
width: Optional[int] = None,
|
| 997 |
+
num_inference_steps: int = 28,
|
| 998 |
+
timesteps: List[int] = None,
|
| 999 |
+
guidance_scale: float = 3.5,
|
| 1000 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1001 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1002 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 1003 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1004 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1005 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1006 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1007 |
+
output_type: Optional[str] = "pil",
|
| 1008 |
+
return_dict: bool = True,
|
| 1009 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1010 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 1011 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 1012 |
+
max_sequence_length: int = 512,
|
| 1013 |
+
optimization_steps: int = 3,
|
| 1014 |
+
learning_rate: float = 0.8,
|
| 1015 |
+
max_steps: int = 5,
|
| 1016 |
+
input_image = None,
|
| 1017 |
+
save_masked_image = False,
|
| 1018 |
+
output_path="",
|
| 1019 |
+
mask_image=None,
|
| 1020 |
+
source_steps=1,
|
| 1021 |
+
):
|
| 1022 |
+
|
| 1023 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 1024 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 1025 |
+
|
| 1026 |
+
# 1. Check inputs. Raise error if not correct
|
| 1027 |
+
self.check_inputs(
|
| 1028 |
+
prompt,
|
| 1029 |
+
prompt_2,
|
| 1030 |
+
height,
|
| 1031 |
+
width,
|
| 1032 |
+
# negative_prompt=negative_prompt,
|
| 1033 |
+
# negative_prompt_2=negative_prompt_2,
|
| 1034 |
+
prompt_embeds=prompt_embeds,
|
| 1035 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
| 1036 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1037 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1038 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 1039 |
+
max_sequence_length=max_sequence_length,
|
| 1040 |
+
)
|
| 1041 |
+
|
| 1042 |
+
self._guidance_scale = guidance_scale
|
| 1043 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 1044 |
+
self._interrupt = False
|
| 1045 |
+
|
| 1046 |
+
# 2. Define call parameters
|
| 1047 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1048 |
+
batch_size = 1
|
| 1049 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1050 |
+
batch_size = len(prompt)
|
| 1051 |
+
else:
|
| 1052 |
+
batch_size = prompt_embeds.shape[0]
|
| 1053 |
+
|
| 1054 |
+
device = self._execution_device
|
| 1055 |
+
|
| 1056 |
+
lora_scale = (
|
| 1057 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 1058 |
+
)
|
| 1059 |
+
do_true_cfg = true_cfg > 1 and negative_prompt is not None
|
| 1060 |
+
(
|
| 1061 |
+
prompt_embeds,
|
| 1062 |
+
pooled_prompt_embeds,
|
| 1063 |
+
text_ids,
|
| 1064 |
+
negative_prompt_embeds,
|
| 1065 |
+
negative_pooled_prompt_embeds,
|
| 1066 |
+
) = self.encode_prompt_edit(
|
| 1067 |
+
prompt=prompt,
|
| 1068 |
+
prompt_2=prompt_2,
|
| 1069 |
+
negative_prompt=negative_prompt,
|
| 1070 |
+
negative_prompt_2=negative_prompt_2,
|
| 1071 |
+
prompt_embeds=prompt_embeds,
|
| 1072 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1073 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1074 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1075 |
+
device=device,
|
| 1076 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1077 |
+
max_sequence_length=max_sequence_length,
|
| 1078 |
+
lora_scale=lora_scale,
|
| 1079 |
+
do_true_cfg=do_true_cfg,
|
| 1080 |
+
)
|
| 1081 |
+
# text_ids = text_ids.repeat(batch_size, 1, 1)
|
| 1082 |
+
|
| 1083 |
+
if do_true_cfg:
|
| 1084 |
+
# Concatenate embeddings
|
| 1085 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1086 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
| 1087 |
+
|
| 1088 |
+
# 4. Prepare latent variables
|
| 1089 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 1090 |
+
random_latents, latent_image_ids = self.prepare_latents(
|
| 1091 |
+
batch_size * num_images_per_prompt,
|
| 1092 |
+
num_channels_latents,
|
| 1093 |
+
height,
|
| 1094 |
+
width,
|
| 1095 |
+
prompt_embeds.dtype,
|
| 1096 |
+
device,
|
| 1097 |
+
generator,
|
| 1098 |
+
latents,
|
| 1099 |
+
)
|
| 1100 |
+
# latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1)
|
| 1101 |
+
|
| 1102 |
+
# 5. Prepare timesteps
|
| 1103 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 1104 |
+
image_seq_len = random_latents.shape[1]
|
| 1105 |
+
mu = calculate_shift(
|
| 1106 |
+
image_seq_len,
|
| 1107 |
+
self.scheduler.config.base_image_seq_len,
|
| 1108 |
+
self.scheduler.config.max_image_seq_len,
|
| 1109 |
+
self.scheduler.config.base_shift,
|
| 1110 |
+
self.scheduler.config.max_shift,
|
| 1111 |
+
)
|
| 1112 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1113 |
+
self.scheduler,
|
| 1114 |
+
num_inference_steps,
|
| 1115 |
+
device,
|
| 1116 |
+
timesteps,
|
| 1117 |
+
sigmas,
|
| 1118 |
+
mu=mu,
|
| 1119 |
+
)
|
| 1120 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 1121 |
+
self._num_timesteps = len(timesteps)
|
| 1122 |
+
|
| 1123 |
+
# 4. Preprocess image
|
| 1124 |
+
image = self.image_processor.preprocess(input_image)
|
| 1125 |
+
image = image.to(device=device, dtype=self.transformer.dtype)
|
| 1126 |
+
latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor
|
| 1127 |
+
|
| 1128 |
+
|
| 1129 |
+
# Convert PIL image to tensor
|
| 1130 |
+
if mask_image:
|
| 1131 |
+
from torchvision import transforms as TF
|
| 1132 |
+
|
| 1133 |
+
h, w = latents.shape[2], latents.shape[3]
|
| 1134 |
+
mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype)
|
| 1135 |
+
mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask)
|
| 1136 |
+
mask = (mask > 0.5).float()
|
| 1137 |
+
mask = mask.squeeze(0)#.squeeze(0) # Remove the added dimensions
|
| 1138 |
+
else:
|
| 1139 |
+
mask = torch.ones_like(latents).to(device=device)
|
| 1140 |
+
|
| 1141 |
+
print(mask.shape, latents.shape)
|
| 1142 |
+
|
| 1143 |
+
bool_mask = mask.unsqueeze(0).unsqueeze(0).expand_as(latents)
|
| 1144 |
+
mask=(1-bool_mask*1.0).to(latents.dtype)
|
| 1145 |
+
|
| 1146 |
+
masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents
|
| 1147 |
+
masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
| 1148 |
+
|
| 1149 |
+
source_latents = (latents).clone().detach() # apply the mask and get gt_latents
|
| 1150 |
+
source_latents = self._pack_latents(source_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
| 1151 |
+
|
| 1152 |
+
mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
| 1153 |
+
|
| 1154 |
+
# initialize the random noise for denoising
|
| 1155 |
+
latents = random_latents.clone().detach()
|
| 1156 |
+
|
| 1157 |
+
self.vae = self.vae.to(torch.float32)
|
| 1158 |
+
|
| 1159 |
+
# 9. Denoising loop
|
| 1160 |
+
self.transformer.eval()
|
| 1161 |
+
self.vae.eval()
|
| 1162 |
+
|
| 1163 |
+
# 6. Denoising loop
|
| 1164 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1165 |
+
for i, t in enumerate(timesteps):
|
| 1166 |
+
if self.interrupt:
|
| 1167 |
+
continue
|
| 1168 |
+
|
| 1169 |
+
latent_model_input = torch.cat([latents] * 2) if do_true_cfg else latents
|
| 1170 |
+
|
| 1171 |
+
# handle guidance
|
| 1172 |
+
if self.transformer.config.guidance_embeds:
|
| 1173 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
| 1174 |
+
guidance = guidance.expand(latent_model_input.shape[0])
|
| 1175 |
+
else:
|
| 1176 |
+
guidance = None
|
| 1177 |
+
|
| 1178 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1179 |
+
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
|
| 1180 |
+
|
| 1181 |
+
noise_pred = self.transformer(
|
| 1182 |
+
hidden_states=latent_model_input,
|
| 1183 |
+
timestep=timestep / 1000,
|
| 1184 |
+
guidance=guidance,
|
| 1185 |
+
pooled_projections=pooled_prompt_embeds,
|
| 1186 |
+
encoder_hidden_states=prompt_embeds,
|
| 1187 |
+
txt_ids=text_ids,
|
| 1188 |
+
img_ids=latent_image_ids,
|
| 1189 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1190 |
+
return_dict=False,
|
| 1191 |
+
)[0]
|
| 1192 |
+
|
| 1193 |
+
if do_true_cfg:
|
| 1194 |
+
neg_noise_pred, noise_pred = noise_pred.chunk(2)
|
| 1195 |
+
# noise_pred = neg_noise_pred + true_cfg * (noise_pred - neg_noise_pred)
|
| 1196 |
+
noise_pred = noise_pred + (1-mask)*(noise_pred - neg_noise_pred) * true_cfg
|
| 1197 |
+
# else:
|
| 1198 |
+
# neg_noise_pred, noise_pred = noise_pred.chunk(2)
|
| 1199 |
+
|
| 1200 |
+
# perform CG
|
| 1201 |
+
if i < max_steps:
|
| 1202 |
+
opt_latents = latents.detach().clone()
|
| 1203 |
+
with torch.enable_grad():
|
| 1204 |
+
opt_latents = opt_latents.detach().requires_grad_()
|
| 1205 |
+
opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True)
|
| 1206 |
+
# optimizer = torch.optim.Adam([opt_latents], lr=learning_rate)
|
| 1207 |
+
|
| 1208 |
+
for _ in range(optimization_steps):
|
| 1209 |
+
latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0]
|
| 1210 |
+
if i < source_steps:
|
| 1211 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, source_latents, reduction='none')).mean()
|
| 1212 |
+
else:
|
| 1213 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean()
|
| 1214 |
+
|
| 1215 |
+
grad = torch.autograd.grad(loss, opt_latents)[0]
|
| 1216 |
+
# grad = torch.clamp(grad, -0.5, 0.5)
|
| 1217 |
+
opt_latents = opt_latents - learning_rate * grad
|
| 1218 |
+
|
| 1219 |
+
latents = opt_latents.detach().clone()
|
| 1220 |
+
|
| 1221 |
+
|
| 1222 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1223 |
+
latents_dtype = latents.dtype
|
| 1224 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 1225 |
+
|
| 1226 |
+
if latents.dtype != latents_dtype:
|
| 1227 |
+
if torch.backends.mps.is_available():
|
| 1228 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1229 |
+
latents = latents.to(latents_dtype)
|
| 1230 |
+
|
| 1231 |
+
if callback_on_step_end is not None:
|
| 1232 |
+
callback_kwargs = {}
|
| 1233 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1234 |
+
callback_kwargs[k] = locals()[k]
|
| 1235 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1236 |
+
|
| 1237 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1238 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1239 |
+
|
| 1240 |
+
# call the callback, if provided
|
| 1241 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1242 |
+
progress_bar.update()
|
| 1243 |
+
|
| 1244 |
+
if XLA_AVAILABLE:
|
| 1245 |
+
xm.mark_step()
|
| 1246 |
+
|
| 1247 |
+
if output_type == "latent":
|
| 1248 |
+
image = latents
|
| 1249 |
+
|
| 1250 |
+
else:
|
| 1251 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 1252 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 1253 |
+
image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0]
|
| 1254 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1255 |
+
|
| 1256 |
+
# Offload all models
|
| 1257 |
+
self.maybe_free_model_hooks()
|
| 1258 |
+
|
| 1259 |
+
if not return_dict:
|
| 1260 |
+
return (image,)
|
| 1261 |
+
|
| 1262 |
+
return FluxPipelineOutput(images=image)
|
| 1263 |
+
|
| 1264 |
+
@torch.no_grad()
|
| 1265 |
+
def edit2(
|
| 1266 |
+
self,
|
| 1267 |
+
prompt: Union[str, List[str]] = None,
|
| 1268 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1269 |
+
negative_prompt: Union[str, List[str]] = None, #
|
| 1270 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1271 |
+
true_cfg: float = 1.0, #
|
| 1272 |
+
height: Optional[int] = None,
|
| 1273 |
+
width: Optional[int] = None,
|
| 1274 |
+
num_inference_steps: int = 28,
|
| 1275 |
+
timesteps: List[int] = None,
|
| 1276 |
+
guidance_scale: float = 3.5,
|
| 1277 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1278 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1279 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 1280 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1281 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1282 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1283 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1284 |
+
output_type: Optional[str] = "pil",
|
| 1285 |
+
return_dict: bool = True,
|
| 1286 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1287 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 1288 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 1289 |
+
max_sequence_length: int = 512,
|
| 1290 |
+
optimization_steps: int = 3,
|
| 1291 |
+
learning_rate: float = 0.8,
|
| 1292 |
+
max_steps: int = 5,
|
| 1293 |
+
input_image = None,
|
| 1294 |
+
save_masked_image = False,
|
| 1295 |
+
output_path="",
|
| 1296 |
+
mask_image=None,
|
| 1297 |
+
source_steps=1,
|
| 1298 |
+
):
|
| 1299 |
+
r"""
|
| 1300 |
+
Function invoked when calling the pipeline for generation.
|
| 1301 |
+
|
| 1302 |
+
Args:
|
| 1303 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 1304 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 1305 |
+
instead.
|
| 1306 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 1307 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 1308 |
+
will be used instead
|
| 1309 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 1310 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 1311 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 1312 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 1313 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1314 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 1315 |
+
expense of slower inference.
|
| 1316 |
+
timesteps (`List[int]`, *optional*):
|
| 1317 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 1318 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 1319 |
+
passed will be used. Must be in descending order.
|
| 1320 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
| 1321 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 1322 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 1323 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 1324 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 1325 |
+
usually at the expense of lower image quality.
|
| 1326 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1327 |
+
The number of images to generate per prompt.
|
| 1328 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1329 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 1330 |
+
to make generation deterministic.
|
| 1331 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 1332 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 1333 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1334 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 1335 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1336 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 1337 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 1338 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1339 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 1340 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 1341 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1342 |
+
The output format of the generate image. Choose between
|
| 1343 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 1344 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1345 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
| 1346 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 1347 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1348 |
+
`self.processor` in
|
| 1349 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 1350 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 1351 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 1352 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 1353 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 1354 |
+
`callback_on_step_end_tensor_inputs`.
|
| 1355 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1356 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1357 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1358 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1359 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
| 1360 |
+
|
| 1361 |
+
Examples:
|
| 1362 |
+
|
| 1363 |
+
Returns:
|
| 1364 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
| 1365 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
| 1366 |
+
images.
|
| 1367 |
+
"""
|
| 1368 |
+
|
| 1369 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 1370 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 1371 |
+
|
| 1372 |
+
# 1. Check inputs. Raise error if not correct
|
| 1373 |
+
self.check_inputs(
|
| 1374 |
+
prompt,
|
| 1375 |
+
prompt_2,
|
| 1376 |
+
height,
|
| 1377 |
+
width,
|
| 1378 |
+
# negative_prompt=negative_prompt,
|
| 1379 |
+
# negative_prompt_2=negative_prompt_2,
|
| 1380 |
+
prompt_embeds=prompt_embeds,
|
| 1381 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
| 1382 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1383 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1384 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 1385 |
+
max_sequence_length=max_sequence_length,
|
| 1386 |
+
)
|
| 1387 |
+
|
| 1388 |
+
self._guidance_scale = guidance_scale
|
| 1389 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 1390 |
+
self._interrupt = False
|
| 1391 |
+
|
| 1392 |
+
# 2. Define call parameters
|
| 1393 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1394 |
+
batch_size = 1
|
| 1395 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1396 |
+
batch_size = len(prompt)
|
| 1397 |
+
else:
|
| 1398 |
+
batch_size = prompt_embeds.shape[0]
|
| 1399 |
+
|
| 1400 |
+
device = self._execution_device
|
| 1401 |
+
|
| 1402 |
+
lora_scale = (
|
| 1403 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 1404 |
+
)
|
| 1405 |
+
do_true_cfg = true_cfg > 1 and negative_prompt is not None
|
| 1406 |
+
(
|
| 1407 |
+
prompt_embeds,
|
| 1408 |
+
pooled_prompt_embeds,
|
| 1409 |
+
text_ids,
|
| 1410 |
+
negative_prompt_embeds,
|
| 1411 |
+
negative_pooled_prompt_embeds,
|
| 1412 |
+
) = self.encode_prompt_edit(
|
| 1413 |
+
prompt=prompt,
|
| 1414 |
+
prompt_2=prompt_2,
|
| 1415 |
+
negative_prompt=negative_prompt,
|
| 1416 |
+
negative_prompt_2=negative_prompt_2,
|
| 1417 |
+
prompt_embeds=prompt_embeds,
|
| 1418 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1419 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1420 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1421 |
+
device=device,
|
| 1422 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1423 |
+
max_sequence_length=max_sequence_length,
|
| 1424 |
+
lora_scale=lora_scale,
|
| 1425 |
+
do_true_cfg=do_true_cfg,
|
| 1426 |
+
)
|
| 1427 |
+
# text_ids = text_ids.repeat(batch_size, 1, 1)
|
| 1428 |
+
|
| 1429 |
+
if do_true_cfg:
|
| 1430 |
+
# Concatenate embeddings
|
| 1431 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1432 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
| 1433 |
+
|
| 1434 |
+
# 4. Prepare latent variables
|
| 1435 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 1436 |
+
random_latents, latent_image_ids = self.prepare_latents(
|
| 1437 |
+
batch_size * num_images_per_prompt,
|
| 1438 |
+
num_channels_latents,
|
| 1439 |
+
height,
|
| 1440 |
+
width,
|
| 1441 |
+
prompt_embeds.dtype,
|
| 1442 |
+
device,
|
| 1443 |
+
generator,
|
| 1444 |
+
latents,
|
| 1445 |
+
)
|
| 1446 |
+
# latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1)
|
| 1447 |
+
|
| 1448 |
+
# 5. Prepare timesteps
|
| 1449 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 1450 |
+
image_seq_len = random_latents.shape[1]
|
| 1451 |
+
mu = calculate_shift(
|
| 1452 |
+
image_seq_len,
|
| 1453 |
+
self.scheduler.config.base_image_seq_len,
|
| 1454 |
+
self.scheduler.config.max_image_seq_len,
|
| 1455 |
+
self.scheduler.config.base_shift,
|
| 1456 |
+
self.scheduler.config.max_shift,
|
| 1457 |
+
)
|
| 1458 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1459 |
+
self.scheduler,
|
| 1460 |
+
num_inference_steps,
|
| 1461 |
+
device,
|
| 1462 |
+
timesteps,
|
| 1463 |
+
sigmas,
|
| 1464 |
+
mu=mu,
|
| 1465 |
+
)
|
| 1466 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 1467 |
+
self._num_timesteps = len(timesteps)
|
| 1468 |
+
|
| 1469 |
+
# 4. Preprocess image
|
| 1470 |
+
image = self.image_processor.preprocess(input_image)
|
| 1471 |
+
image = image.to(device=device, dtype=self.transformer.dtype)
|
| 1472 |
+
latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor
|
| 1473 |
+
|
| 1474 |
+
|
| 1475 |
+
# Convert PIL image to tensor
|
| 1476 |
+
if mask_image:
|
| 1477 |
+
from torchvision import transforms as TF
|
| 1478 |
+
|
| 1479 |
+
h, w = latents.shape[2], latents.shape[3]
|
| 1480 |
+
mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype)
|
| 1481 |
+
mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask)
|
| 1482 |
+
mask = (mask > 0.1).float()
|
| 1483 |
+
mask = mask.squeeze(0)#.squeeze(0) # Remove the added dimensions
|
| 1484 |
+
else:
|
| 1485 |
+
mask = torch.ones_like(latents).to(device=device)
|
| 1486 |
+
|
| 1487 |
+
bool_mask = mask.unsqueeze(0).unsqueeze(0).expand_as(latents)
|
| 1488 |
+
mask=(1-bool_mask*1.0).to(latents.dtype)
|
| 1489 |
+
|
| 1490 |
+
masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents
|
| 1491 |
+
masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
| 1492 |
+
|
| 1493 |
+
source_latents = (latents).clone().detach() # apply the mask and get gt_latents
|
| 1494 |
+
source_latents = self._pack_latents(source_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
| 1495 |
+
|
| 1496 |
+
mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
| 1497 |
+
|
| 1498 |
+
# initialize the random noise for denoising
|
| 1499 |
+
latents = random_latents.clone().detach()
|
| 1500 |
+
|
| 1501 |
+
self.vae = self.vae.to(torch.float32)
|
| 1502 |
+
|
| 1503 |
+
# 9. Denoising loop
|
| 1504 |
+
self.transformer.eval()
|
| 1505 |
+
self.vae.eval()
|
| 1506 |
+
|
| 1507 |
+
# 6. Denoising loop
|
| 1508 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1509 |
+
for i, t in enumerate(timesteps):
|
| 1510 |
+
if self.interrupt:
|
| 1511 |
+
continue
|
| 1512 |
+
|
| 1513 |
+
latent_model_input = torch.cat([latents] * 2) if do_true_cfg else latents
|
| 1514 |
+
|
| 1515 |
+
# handle guidance
|
| 1516 |
+
if self.transformer.config.guidance_embeds:
|
| 1517 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
| 1518 |
+
guidance = guidance.expand(latent_model_input.shape[0])
|
| 1519 |
+
else:
|
| 1520 |
+
guidance = None
|
| 1521 |
+
|
| 1522 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1523 |
+
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
|
| 1524 |
+
|
| 1525 |
+
noise_pred = self.transformer(
|
| 1526 |
+
hidden_states=latent_model_input,
|
| 1527 |
+
timestep=timestep / 1000,
|
| 1528 |
+
guidance=guidance,
|
| 1529 |
+
pooled_projections=pooled_prompt_embeds,
|
| 1530 |
+
encoder_hidden_states=prompt_embeds,
|
| 1531 |
+
txt_ids=text_ids,
|
| 1532 |
+
img_ids=latent_image_ids,
|
| 1533 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1534 |
+
return_dict=False,
|
| 1535 |
+
)[0]
|
| 1536 |
+
|
| 1537 |
+
if do_true_cfg and i < max_steps:
|
| 1538 |
+
neg_noise_pred, noise_pred = noise_pred.chunk(2)
|
| 1539 |
+
# noise_pred = neg_noise_pred + true_cfg * (noise_pred - neg_noise_pred)
|
| 1540 |
+
noise_pred = noise_pred + (1-mask)*(noise_pred - neg_noise_pred) * true_cfg
|
| 1541 |
+
else:
|
| 1542 |
+
neg_noise_pred, noise_pred = noise_pred.chunk(2)
|
| 1543 |
+
|
| 1544 |
+
# perform CG
|
| 1545 |
+
if i < max_steps:
|
| 1546 |
+
opt_latents = latents.detach().clone()
|
| 1547 |
+
with torch.enable_grad():
|
| 1548 |
+
opt_latents = opt_latents.detach().requires_grad_()
|
| 1549 |
+
opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True)
|
| 1550 |
+
# optimizer = torch.optim.Adam([opt_latents], lr=learning_rate)
|
| 1551 |
+
|
| 1552 |
+
for _ in range(optimization_steps):
|
| 1553 |
+
latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0]
|
| 1554 |
+
if i < source_steps:
|
| 1555 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, source_latents, reduction='none')).mean()
|
| 1556 |
+
else:
|
| 1557 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean()
|
| 1558 |
+
|
| 1559 |
+
grad = torch.autograd.grad(loss, opt_latents)[0]
|
| 1560 |
+
# grad = torch.clamp(grad, -0.5, 0.5)
|
| 1561 |
+
opt_latents = opt_latents - learning_rate * grad
|
| 1562 |
+
|
| 1563 |
+
latents = opt_latents.detach().clone()
|
| 1564 |
+
|
| 1565 |
+
|
| 1566 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1567 |
+
latents_dtype = latents.dtype
|
| 1568 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 1569 |
+
|
| 1570 |
+
if latents.dtype != latents_dtype:
|
| 1571 |
+
if torch.backends.mps.is_available():
|
| 1572 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1573 |
+
latents = latents.to(latents_dtype)
|
| 1574 |
+
|
| 1575 |
+
if callback_on_step_end is not None:
|
| 1576 |
+
callback_kwargs = {}
|
| 1577 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1578 |
+
callback_kwargs[k] = locals()[k]
|
| 1579 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1580 |
+
|
| 1581 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1582 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1583 |
+
|
| 1584 |
+
# call the callback, if provided
|
| 1585 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1586 |
+
progress_bar.update()
|
| 1587 |
+
|
| 1588 |
+
if XLA_AVAILABLE:
|
| 1589 |
+
xm.mark_step()
|
| 1590 |
+
|
| 1591 |
+
if output_type == "latent":
|
| 1592 |
+
image = latents
|
| 1593 |
+
|
| 1594 |
+
else:
|
| 1595 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 1596 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 1597 |
+
image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0]
|
| 1598 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1599 |
+
|
| 1600 |
+
# Offload all models
|
| 1601 |
+
self.maybe_free_model_hooks()
|
| 1602 |
+
|
| 1603 |
+
if not return_dict:
|
| 1604 |
+
return (image,)
|
| 1605 |
+
|
| 1606 |
+
return FluxPipelineOutput(images=image)
|
| 1607 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
spaces
|
| 2 |
+
diffusers==0.31.0
|
| 3 |
+
gradio==5.6.0
|
| 4 |
+
numpy==2.1.3
|
| 5 |
+
Pillow==11.0.0
|
| 6 |
+
torch==2.1.2
|
| 7 |
+
torch_xla==2.5.1
|
| 8 |
+
torchvision==0.16.2
|
| 9 |
+
transformers==4.45.2
|
saved_results/20241126_053639/input.png
ADDED
|
saved_results/20241126_053639/mask.png
ADDED
|
saved_results/20241126_053639/output.png
ADDED
|
Git LFS Details
|
saved_results/20241126_053639/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Inpainting",
|
| 3 |
+
"prompt": "a dog",
|
| 4 |
+
"edit_prompt": "",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 30,
|
| 9 |
+
"learning_rate": 1,
|
| 10 |
+
"max_source_steps": 20,
|
| 11 |
+
"optimization_steps": 10,
|
| 12 |
+
"true_cfg": 2
|
| 13 |
+
}
|
saved_results/20241126_055109/input.png
ADDED
|
saved_results/20241126_055109/mask.png
ADDED
|
saved_results/20241126_055109/output.png
ADDED
|
Git LFS Details
|
saved_results/20241126_055109/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Inpainting",
|
| 3 |
+
"prompt": "a dog",
|
| 4 |
+
"edit_prompt": "",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 30,
|
| 9 |
+
"learning_rate": 1,
|
| 10 |
+
"max_source_steps": 20,
|
| 11 |
+
"optimization_steps": 10,
|
| 12 |
+
"true_cfg": 2
|
| 13 |
+
}
|
saved_results/20241126_173140/input.png
ADDED
|
saved_results/20241126_173140/mask.png
ADDED
|
saved_results/20241126_173140/output.png
ADDED
|
Git LFS Details
|
saved_results/20241126_173140/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Inpainting",
|
| 3 |
+
"prompt": "a cat with blue eyes",
|
| 4 |
+
"edit_prompt": "",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 20,
|
| 9 |
+
"learning_rate": 1,
|
| 10 |
+
"max_source_steps": 20,
|
| 11 |
+
"optimization_steps": 10,
|
| 12 |
+
"true_cfg": 2
|
| 13 |
+
}
|
saved_results/20241126_181436/input.png
ADDED
|
Git LFS Details
|
saved_results/20241126_181436/mask.png
ADDED
|
saved_results/20241126_181436/output.png
ADDED
|
saved_results/20241126_181436/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Editing",
|
| 3 |
+
"prompt": " ",
|
| 4 |
+
"edit_prompt": "volcano eruption",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 20,
|
| 9 |
+
"learning_rate": 0.5,
|
| 10 |
+
"max_source_steps": 2,
|
| 11 |
+
"optimization_steps": 3,
|
| 12 |
+
"true_cfg": 4.5
|
| 13 |
+
}
|
saved_results/20241126_181633/input.png
ADDED
|
Git LFS Details
|
saved_results/20241126_181633/mask.png
ADDED
|
saved_results/20241126_181633/output.png
ADDED
|
saved_results/20241126_181633/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Editing",
|
| 3 |
+
"prompt": " ",
|
| 4 |
+
"edit_prompt": "volcano eruption",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 20,
|
| 9 |
+
"learning_rate": 0.5,
|
| 10 |
+
"max_source_steps": 2,
|
| 11 |
+
"optimization_steps": 3,
|
| 12 |
+
"true_cfg": 4.5
|
| 13 |
+
}
|
saved_results/20241126_214810/input.png
ADDED
|
saved_results/20241126_214810/mask.png
ADDED
|
saved_results/20241126_214810/output.png
ADDED
|
Git LFS Details
|
saved_results/20241126_214810/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Editing",
|
| 3 |
+
"prompt": " ",
|
| 4 |
+
"edit_prompt": "a dog with flowers in the mouth",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 30,
|
| 9 |
+
"learning_rate": 1,
|
| 10 |
+
"max_source_steps": 5,
|
| 11 |
+
"optimization_steps": 3,
|
| 12 |
+
"true_cfg": 4.5
|
| 13 |
+
}
|
saved_results/20241126_214908/input.png
ADDED
|
saved_results/20241126_214908/mask.png
ADDED
|
saved_results/20241126_214908/output.png
ADDED
|
Git LFS Details
|
saved_results/20241126_214908/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Editing",
|
| 3 |
+
"prompt": " ",
|
| 4 |
+
"edit_prompt": "a dog with flowers in the mouth",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 20,
|
| 9 |
+
"learning_rate": 1,
|
| 10 |
+
"max_source_steps": 5,
|
| 11 |
+
"optimization_steps": 3,
|
| 12 |
+
"true_cfg": 4.5
|
| 13 |
+
}
|
saved_results/20241126_215043/input.png
ADDED
|
saved_results/20241126_215043/mask.png
ADDED
|
saved_results/20241126_215043/output.png
ADDED
|
Git LFS Details
|
saved_results/20241126_215043/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Editing",
|
| 3 |
+
"prompt": " ",
|
| 4 |
+
"edit_prompt": "a dog with flowers in the mouth",
|
| 5 |
+
"seed": 52,
|
| 6 |
+
"randomize_seed": false,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 20,
|
| 9 |
+
"learning_rate": 1,
|
| 10 |
+
"max_source_steps": 5,
|
| 11 |
+
"optimization_steps": 3,
|
| 12 |
+
"true_cfg": 4.5
|
| 13 |
+
}
|
saved_results/20241126_221300/input.png
ADDED
|
saved_results/20241126_221300/mask.png
ADDED
|
saved_results/20241126_221300/output.png
ADDED
|
Git LFS Details
|
saved_results/20241126_221300/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Inpainting",
|
| 3 |
+
"prompt": "A building with \"ASU\" written on it.",
|
| 4 |
+
"edit_prompt": "",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 30,
|
| 9 |
+
"learning_rate": 1,
|
| 10 |
+
"max_source_steps": 20,
|
| 11 |
+
"optimization_steps": 5,
|
| 12 |
+
"true_cfg": 2
|
| 13 |
+
}
|
saved_results/20241126_222257/input.png
ADDED
|
saved_results/20241126_222257/mask.png
ADDED
|
saved_results/20241126_222257/output.png
ADDED
|
Git LFS Details
|
saved_results/20241126_222257/parameters.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"mode": "Inpainting",
|
| 3 |
+
"prompt": "A cute pig with big eyes",
|
| 4 |
+
"edit_prompt": "",
|
| 5 |
+
"seed": 0,
|
| 6 |
+
"randomize_seed": true,
|
| 7 |
+
"num_inference_steps": 30,
|
| 8 |
+
"max_steps": 19.8,
|
| 9 |
+
"learning_rate": 1,
|
| 10 |
+
"max_source_steps": 20,
|
| 11 |
+
"optimization_steps": 5,
|
| 12 |
+
"true_cfg": 2
|
| 13 |
+
}
|
saved_results/20241126_222442/input.png
ADDED
|
saved_results/20241126_222442/mask.png
ADDED
|
saved_results/20241126_222442/output.png
ADDED
|
Git LFS Details
|