Spaces:
Sleeping
Sleeping
| """ | |
| MIT Licensed Code | |
| Copyright (c) 2022 Aaron (Yinghao) Li | |
| https://github.com/yl4579/StyleTTS/blob/main/models.py | |
| """ | |
| import math | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from torch.nn.utils import spectral_norm | |
| class StyleEncoder(nn.Module): | |
| def __init__(self, dim_in=128, style_dim=64, max_conv_dim=384): | |
| super().__init__() | |
| blocks = [] | |
| blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
| repeat_num = 4 | |
| for _ in range(repeat_num): | |
| dim_out = min(dim_in * 2, max_conv_dim) | |
| blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
| dim_in = dim_out | |
| blocks += [nn.LeakyReLU(0.2)] | |
| blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
| blocks += [nn.AdaptiveAvgPool2d(1)] | |
| blocks += [nn.LeakyReLU(0.2)] | |
| self.shared = nn.Sequential(*blocks) | |
| self.unshared = nn.Linear(dim_out, style_dim) | |
| def forward(self, speech): | |
| h = self.shared(speech.unsqueeze(1)) | |
| h = h.view(h.size(0), -1) | |
| s = self.unshared(h) | |
| return s | |
| class ResBlk(nn.Module): | |
| def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
| normalize=False, downsample='none'): | |
| super().__init__() | |
| self.actv = actv | |
| self.normalize = normalize | |
| self.downsample = DownSample(downsample) | |
| self.downsample_res = LearnedDownSample(downsample, dim_in) | |
| self.learned_sc = dim_in != dim_out | |
| self._build_weights(dim_in, dim_out) | |
| def _build_weights(self, dim_in, dim_out): | |
| self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) | |
| self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) | |
| if self.normalize: | |
| self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) | |
| self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) | |
| if self.learned_sc: | |
| self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
| def _shortcut(self, x): | |
| if self.learned_sc: | |
| x = self.conv1x1(x) | |
| if self.downsample: | |
| x = self.downsample(x) | |
| return x | |
| def _residual(self, x): | |
| if self.normalize: | |
| x = self.norm1(x) | |
| x = self.actv(x) | |
| x = self.conv1(x) | |
| x = self.downsample_res(x) | |
| if self.normalize: | |
| x = self.norm2(x) | |
| x = self.actv(x) | |
| x = self.conv2(x) | |
| return x | |
| def forward(self, x): | |
| x = self._shortcut(x) + self._residual(x) | |
| return x / math.sqrt(2) # unit variance | |
| class LearnedDownSample(nn.Module): | |
| def __init__(self, layer_type, dim_in): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| if self.layer_type == 'none': | |
| self.conv = nn.Identity() | |
| elif self.layer_type == 'timepreserve': | |
| self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0))) | |
| elif self.layer_type == 'half': | |
| self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) | |
| else: | |
| raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class LearnedUpSample(nn.Module): | |
| def __init__(self, layer_type, dim_in): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| if self.layer_type == 'none': | |
| self.conv = nn.Identity() | |
| elif self.layer_type == 'timepreserve': | |
| self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0)) | |
| elif self.layer_type == 'half': | |
| self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1) | |
| else: | |
| raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class DownSample(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == 'none': | |
| return x | |
| elif self.layer_type == 'timepreserve': | |
| return F.avg_pool2d(x, (2, 1)) | |
| elif self.layer_type == 'half': | |
| if x.shape[-1] % 2 != 0: | |
| x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
| return F.avg_pool2d(x, 2) | |
| else: | |
| raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
| class UpSample(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == 'none': | |
| return x | |
| elif self.layer_type == 'timepreserve': | |
| return F.interpolate(x, scale_factor=(2, 1), mode='nearest') | |
| elif self.layer_type == 'half': | |
| return F.interpolate(x, scale_factor=2, mode='nearest') | |
| else: | |
| raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |