Spaces:
Runtime error
Runtime error
Delete Utility/utils.py
Browse files- Utility/utils.py +0 -320
Utility/utils.py
DELETED
@@ -1,320 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Taken from ESPNet, modified by Florian Lux
|
3 |
-
"""
|
4 |
-
|
5 |
-
import os
|
6 |
-
from abc import ABC
|
7 |
-
|
8 |
-
import torch
|
9 |
-
|
10 |
-
|
11 |
-
def cumsum_durations(durations):
|
12 |
-
out = [0]
|
13 |
-
for duration in durations:
|
14 |
-
out.append(duration + out[-1])
|
15 |
-
centers = list()
|
16 |
-
for index, _ in enumerate(out):
|
17 |
-
if index + 1 < len(out):
|
18 |
-
centers.append((out[index] + out[index + 1]) / 2)
|
19 |
-
return out, centers
|
20 |
-
|
21 |
-
|
22 |
-
def delete_old_checkpoints(checkpoint_dir, keep=5):
|
23 |
-
checkpoint_list = list()
|
24 |
-
for el in os.listdir(checkpoint_dir):
|
25 |
-
if el.endswith(".pt") and el != "best.pt":
|
26 |
-
checkpoint_list.append(int(el.split(".")[0].split("_")[1]))
|
27 |
-
if len(checkpoint_list) <= keep:
|
28 |
-
return
|
29 |
-
else:
|
30 |
-
checkpoint_list.sort(reverse=False)
|
31 |
-
checkpoints_to_delete = [os.path.join(checkpoint_dir, "checkpoint_{}.pt".format(step)) for step in checkpoint_list[:-keep]]
|
32 |
-
for old_checkpoint in checkpoints_to_delete:
|
33 |
-
os.remove(os.path.join(old_checkpoint))
|
34 |
-
|
35 |
-
|
36 |
-
def get_most_recent_checkpoint(checkpoint_dir, verbose=True):
|
37 |
-
checkpoint_list = list()
|
38 |
-
for el in os.listdir(checkpoint_dir):
|
39 |
-
if el.endswith(".pt") and el != "best.pt":
|
40 |
-
checkpoint_list.append(int(el.split(".")[0].split("_")[1]))
|
41 |
-
if len(checkpoint_list) == 0:
|
42 |
-
print("No previous checkpoints found, cannot reload.")
|
43 |
-
return None
|
44 |
-
checkpoint_list.sort(reverse=True)
|
45 |
-
if verbose:
|
46 |
-
print("Reloading checkpoint_{}.pt".format(checkpoint_list[0]))
|
47 |
-
return os.path.join(checkpoint_dir, "checkpoint_{}.pt".format(checkpoint_list[0]))
|
48 |
-
|
49 |
-
|
50 |
-
def make_pad_mask(lengths, xs=None, length_dim=-1, device=None):
|
51 |
-
"""
|
52 |
-
Make mask tensor containing indices of padded part.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
lengths (LongTensor or List): Batch of lengths (B,).
|
56 |
-
xs (Tensor, optional): The reference tensor.
|
57 |
-
If set, masks will be the same shape as this tensor.
|
58 |
-
length_dim (int, optional): Dimension indicator of the above tensor.
|
59 |
-
See the example.
|
60 |
-
|
61 |
-
Returns:
|
62 |
-
Tensor: Mask tensor containing indices of padded part.
|
63 |
-
dtype=torch.uint8 in PyTorch 1.2-
|
64 |
-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
|
65 |
-
|
66 |
-
"""
|
67 |
-
if length_dim == 0:
|
68 |
-
raise ValueError("length_dim cannot be 0: {}".format(length_dim))
|
69 |
-
|
70 |
-
if not isinstance(lengths, list):
|
71 |
-
lengths = lengths.tolist()
|
72 |
-
bs = int(len(lengths))
|
73 |
-
if xs is None:
|
74 |
-
maxlen = int(max(lengths))
|
75 |
-
else:
|
76 |
-
maxlen = xs.size(length_dim)
|
77 |
-
|
78 |
-
if device is not None:
|
79 |
-
seq_range = torch.arange(0, maxlen, dtype=torch.int64, device=device)
|
80 |
-
else:
|
81 |
-
seq_range = torch.arange(0, maxlen, dtype=torch.int64)
|
82 |
-
seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
|
83 |
-
seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
|
84 |
-
mask = seq_range_expand >= seq_length_expand
|
85 |
-
|
86 |
-
if xs is not None:
|
87 |
-
assert xs.size(0) == bs, (xs.size(0), bs)
|
88 |
-
|
89 |
-
if length_dim < 0:
|
90 |
-
length_dim = xs.dim() + length_dim
|
91 |
-
# ind = (:, None, ..., None, :, , None, ..., None)
|
92 |
-
ind = tuple(slice(None) if i in (0, length_dim) else None for i in range(xs.dim()))
|
93 |
-
mask = mask[ind].expand_as(xs).to(xs.device)
|
94 |
-
return mask
|
95 |
-
|
96 |
-
|
97 |
-
def make_non_pad_mask(lengths, xs=None, length_dim=-1, device=None):
|
98 |
-
"""
|
99 |
-
Make mask tensor containing indices of non-padded part.
|
100 |
-
|
101 |
-
Args:
|
102 |
-
lengths (LongTensor or List): Batch of lengths (B,).
|
103 |
-
xs (Tensor, optional): The reference tensor.
|
104 |
-
If set, masks will be the same shape as this tensor.
|
105 |
-
length_dim (int, optional): Dimension indicator of the above tensor.
|
106 |
-
See the example.
|
107 |
-
|
108 |
-
Returns:
|
109 |
-
ByteTensor: mask tensor containing indices of padded part.
|
110 |
-
dtype=torch.uint8 in PyTorch 1.2-
|
111 |
-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
|
112 |
-
|
113 |
-
"""
|
114 |
-
return ~make_pad_mask(lengths, xs, length_dim, device=device)
|
115 |
-
|
116 |
-
|
117 |
-
def initialize(model, init):
|
118 |
-
"""
|
119 |
-
Initialize weights of a neural network module.
|
120 |
-
|
121 |
-
Parameters are initialized using the given method or distribution.
|
122 |
-
|
123 |
-
Args:
|
124 |
-
model: Target.
|
125 |
-
init: Method of initialization.
|
126 |
-
"""
|
127 |
-
|
128 |
-
# weight init
|
129 |
-
for p in model.parameters():
|
130 |
-
if p.dim() > 1:
|
131 |
-
if init == "xavier_uniform":
|
132 |
-
torch.nn.init.xavier_uniform_(p.data)
|
133 |
-
elif init == "xavier_normal":
|
134 |
-
torch.nn.init.xavier_normal_(p.data)
|
135 |
-
elif init == "kaiming_uniform":
|
136 |
-
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
137 |
-
elif init == "kaiming_normal":
|
138 |
-
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
139 |
-
else:
|
140 |
-
raise ValueError("Unknown initialization: " + init)
|
141 |
-
# bias init
|
142 |
-
for p in model.parameters():
|
143 |
-
if p.dim() == 1:
|
144 |
-
p.data.zero_()
|
145 |
-
|
146 |
-
# reset some modules with default init
|
147 |
-
for m in model.modules():
|
148 |
-
if isinstance(m, (torch.nn.Embedding, torch.nn.LayerNorm)):
|
149 |
-
m.reset_parameters()
|
150 |
-
|
151 |
-
|
152 |
-
def pad_list(xs, pad_value):
|
153 |
-
"""
|
154 |
-
Perform padding for the list of tensors.
|
155 |
-
|
156 |
-
Args:
|
157 |
-
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
158 |
-
pad_value (float): Value for padding.
|
159 |
-
|
160 |
-
Returns:
|
161 |
-
Tensor: Padded tensor (B, Tmax, `*`).
|
162 |
-
|
163 |
-
"""
|
164 |
-
n_batch = len(xs)
|
165 |
-
max_len = max(x.size(0) for x in xs)
|
166 |
-
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
|
167 |
-
|
168 |
-
for i in range(n_batch):
|
169 |
-
pad[i, : xs[i].size(0)] = xs[i]
|
170 |
-
|
171 |
-
return pad
|
172 |
-
|
173 |
-
|
174 |
-
def subsequent_mask(size, device="cpu", dtype=torch.bool):
|
175 |
-
"""
|
176 |
-
Create mask for subsequent steps (size, size).
|
177 |
-
|
178 |
-
:param int size: size of mask
|
179 |
-
:param str device: "cpu" or "cuda" or torch.Tensor.device
|
180 |
-
:param torch.dtype dtype: result dtype
|
181 |
-
:rtype
|
182 |
-
"""
|
183 |
-
ret = torch.ones(size, size, device=device, dtype=dtype)
|
184 |
-
return torch.tril(ret, out=ret)
|
185 |
-
|
186 |
-
|
187 |
-
class ScorerInterface:
|
188 |
-
"""
|
189 |
-
Scorer interface for beam search.
|
190 |
-
|
191 |
-
The scorer performs scoring of the all tokens in vocabulary.
|
192 |
-
|
193 |
-
Examples:
|
194 |
-
* Search heuristics
|
195 |
-
* :class:`espnet.nets.scorers.length_bonus.LengthBonus`
|
196 |
-
* Decoder networks of the sequence-to-sequence models
|
197 |
-
* :class:`espnet.nets.pytorch_backend.nets.transformer.decoder.Decoder`
|
198 |
-
* :class:`espnet.nets.pytorch_backend.nets.rnn.decoders.Decoder`
|
199 |
-
* Neural language models
|
200 |
-
* :class:`espnet.nets.pytorch_backend.lm.transformer.TransformerLM`
|
201 |
-
* :class:`espnet.nets.pytorch_backend.lm.default.DefaultRNNLM`
|
202 |
-
* :class:`espnet.nets.pytorch_backend.lm.seq_rnn.SequentialRNNLM`
|
203 |
-
|
204 |
-
"""
|
205 |
-
|
206 |
-
def init_state(self, x):
|
207 |
-
"""
|
208 |
-
Get an initial state for decoding (optional).
|
209 |
-
|
210 |
-
Args:
|
211 |
-
x (torch.Tensor): The encoded feature tensor
|
212 |
-
|
213 |
-
Returns: initial state
|
214 |
-
|
215 |
-
"""
|
216 |
-
return None
|
217 |
-
|
218 |
-
def select_state(self, state, i, new_id=None):
|
219 |
-
"""
|
220 |
-
Select state with relative ids in the main beam search.
|
221 |
-
|
222 |
-
Args:
|
223 |
-
state: Decoder state for prefix tokens
|
224 |
-
i (int): Index to select a state in the main beam search
|
225 |
-
new_id (int): New label index to select a state if necessary
|
226 |
-
|
227 |
-
Returns:
|
228 |
-
state: pruned state
|
229 |
-
|
230 |
-
"""
|
231 |
-
return None if state is None else state[i]
|
232 |
-
|
233 |
-
def score(self, y, state, x):
|
234 |
-
"""
|
235 |
-
Score new token (required).
|
236 |
-
|
237 |
-
Args:
|
238 |
-
y (torch.Tensor): 1D torch.int64 prefix tokens.
|
239 |
-
state: Scorer state for prefix tokens
|
240 |
-
x (torch.Tensor): The encoder feature that generates ys.
|
241 |
-
|
242 |
-
Returns:
|
243 |
-
tuple[torch.Tensor, Any]: Tuple of
|
244 |
-
scores for next token that has a shape of `(n_vocab)`
|
245 |
-
and next state for ys
|
246 |
-
|
247 |
-
"""
|
248 |
-
raise NotImplementedError
|
249 |
-
|
250 |
-
def final_score(self, state):
|
251 |
-
"""
|
252 |
-
Score eos (optional).
|
253 |
-
|
254 |
-
Args:
|
255 |
-
state: Scorer state for prefix tokens
|
256 |
-
|
257 |
-
Returns:
|
258 |
-
float: final score
|
259 |
-
|
260 |
-
"""
|
261 |
-
return 0.0
|
262 |
-
|
263 |
-
|
264 |
-
class BatchScorerInterface(ScorerInterface, ABC):
|
265 |
-
|
266 |
-
def batch_init_state(self, x):
|
267 |
-
"""
|
268 |
-
Get an initial state for decoding (optional).
|
269 |
-
|
270 |
-
Args:
|
271 |
-
x (torch.Tensor): The encoded feature tensor
|
272 |
-
|
273 |
-
Returns: initial state
|
274 |
-
|
275 |
-
"""
|
276 |
-
return self.init_state(x)
|
277 |
-
|
278 |
-
def batch_score(self, ys, states, xs):
|
279 |
-
"""
|
280 |
-
Score new token batch (required).
|
281 |
-
|
282 |
-
Args:
|
283 |
-
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
|
284 |
-
states (List[Any]): Scorer states for prefix tokens.
|
285 |
-
xs (torch.Tensor):
|
286 |
-
The encoder feature that generates ys (n_batch, xlen, n_feat).
|
287 |
-
|
288 |
-
Returns:
|
289 |
-
tuple[torch.Tensor, List[Any]]: Tuple of
|
290 |
-
batchfied scores for next token with shape of `(n_batch, n_vocab)`
|
291 |
-
and next state list for ys.
|
292 |
-
|
293 |
-
"""
|
294 |
-
scores = list()
|
295 |
-
outstates = list()
|
296 |
-
for i, (y, state, x) in enumerate(zip(ys, states, xs)):
|
297 |
-
score, outstate = self.score(y, state, x)
|
298 |
-
outstates.append(outstate)
|
299 |
-
scores.append(score)
|
300 |
-
scores = torch.cat(scores, 0).view(ys.shape[0], -1)
|
301 |
-
return scores, outstates
|
302 |
-
|
303 |
-
|
304 |
-
def to_device(m, x):
|
305 |
-
"""Send tensor into the device of the module.
|
306 |
-
Args:
|
307 |
-
m (torch.nn.Module): Torch module.
|
308 |
-
x (Tensor): Torch tensor.
|
309 |
-
Returns:
|
310 |
-
Tensor: Torch tensor located in the same place as torch module.
|
311 |
-
"""
|
312 |
-
if isinstance(m, torch.nn.Module):
|
313 |
-
device = next(m.parameters()).device
|
314 |
-
elif isinstance(m, torch.Tensor):
|
315 |
-
device = m.device
|
316 |
-
else:
|
317 |
-
raise TypeError(
|
318 |
-
"Expected torch.nn.Module or torch.tensor, " f"bot got: {type(m)}"
|
319 |
-
)
|
320 |
-
return x.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|