Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -83,19 +83,18 @@ class DemandForecasting:
|
|
83 |
return None
|
84 |
|
85 |
|
86 |
-
def find_date_column(self, df_data: pd.DataFrame
|
87 |
"""
|
88 |
-
Find the column containing date
|
89 |
|
90 |
Args:
|
91 |
- df_data (pd.DataFrame): Input DataFrame.
|
92 |
-
- list_columns (list): List of column names to search for date information.
|
93 |
|
94 |
Returns:
|
95 |
-
- str: Name of the column containing date
|
96 |
"""
|
97 |
-
for column in
|
98 |
-
# Check if the column
|
99 |
try:
|
100 |
pd.to_datetime(df_data[column])
|
101 |
return column
|
@@ -105,61 +104,53 @@ class DemandForecasting:
|
|
105 |
# Return None if no date column is found
|
106 |
return None
|
107 |
|
108 |
-
def preprocess_data(self, df_data: pd.DataFrame, list_columns, target_column) -> pd.DataFrame:
|
109 |
"""
|
110 |
-
|
111 |
|
112 |
Args:
|
113 |
-
- df_data (pd.DataFrame): Input DataFrame
|
|
|
|
|
114 |
|
115 |
Returns:
|
116 |
-
- pd.DataFrame:
|
117 |
"""
|
118 |
-
|
119 |
-
|
120 |
-
# Make a copy of the input DataFrame to avoid modifying the original data
|
121 |
-
df_data = df_data.copy()
|
122 |
-
|
123 |
-
list_columns.append(target_column)
|
124 |
-
|
125 |
-
# Drop columns not in list_columns
|
126 |
-
columns_to_drop = [col for col in df_data.columns if col not in list_columns]
|
127 |
-
df_data.drop(columns=columns_to_drop, inplace=True)
|
128 |
|
129 |
-
|
130 |
-
date_column = self.find_date_column(df_data, list_columns)
|
131 |
-
if date_column is None:
|
132 |
-
raise ValueError("No date column found in the provided list of columns.")
|
133 |
|
|
|
|
|
|
|
134 |
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
|
142 |
# Cyclical Encoding for Months
|
143 |
-
df_data['month_sin'] = np.sin(2 * np.pi * df_data['month'] / 12)
|
144 |
-
df_data['month_cos'] = np.cos(2 * np.pi * df_data['month'] / 12)
|
145 |
|
146 |
# Day of the Week
|
147 |
-
df_data['day_of_week'] = df_data[date_column].dt.weekday
|
148 |
|
149 |
# Week of the Year
|
150 |
-
df_data['week_of_year'] = df_data[date_column].dt.isocalendar().week.astype(int)
|
151 |
|
152 |
-
df_data.drop(columns=[date_column], inplace=True)
|
153 |
|
154 |
-
|
155 |
-
return df_data
|
156 |
-
|
157 |
-
except Exception as e:
|
158 |
-
# Log an error message if an exception occurs during data preprocessing
|
159 |
-
LOGGER.error(f"Error preprocessing data: {e}")
|
160 |
-
|
161 |
-
# Return None in case of an error
|
162 |
-
return None
|
163 |
|
164 |
def train_model(self, train: pd.DataFrame, target_column, list_columns) -> tuple:
|
165 |
"""
|
@@ -215,24 +206,48 @@ class DemandForecasting:
|
|
215 |
# Return None for all outputs in case of an error
|
216 |
return None, None, None
|
217 |
|
218 |
-
def
|
219 |
-
"""
|
220 |
-
Plot interactive evaluation using Plotly.
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
"""
|
227 |
-
try:
|
228 |
-
# Create a scatter plot using Plotly
|
229 |
-
fig = px.scatter(x=y_true, y=y_pred, labels={'x': 'True Values', 'y': 'Predictions'}, title=title, color_discrete_map={'': 'purple'})
|
230 |
-
fig.show()
|
231 |
-
return fig
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
|
238 |
def predict_sales_for_date(self, input_data, model: xgb.Booster) -> float:
|
@@ -356,10 +371,6 @@ class DemandForecasting:
|
|
356 |
# Split the string by comma and convert it into a list
|
357 |
column_list = column_list.split(",")
|
358 |
|
359 |
-
print("train_csv_path", train_csv_path)
|
360 |
-
print("audio_path", audio_path)
|
361 |
-
print("column_list", column_list)
|
362 |
-
print("target_column", target_column)
|
363 |
|
364 |
text = self.audio_to_text(audio_path)
|
365 |
|
@@ -375,7 +386,9 @@ class DemandForecasting:
|
|
375 |
trained_model, y_val, y_val_pred, validation = self.train_model(train_df, target_column, column_list)
|
376 |
|
377 |
# Plot interactive evaluation for training
|
378 |
-
|
|
|
|
|
379 |
|
380 |
# Predict sales for the specified date using the trained model
|
381 |
predicted_value = self.predict_sales_for_date(input_data, trained_model)
|
|
|
83 |
return None
|
84 |
|
85 |
|
86 |
+
def find_date_column(self, df_data: pd.DataFrame) -> str:
|
87 |
"""
|
88 |
+
Find the column containing date-type values from the DataFrame.
|
89 |
|
90 |
Args:
|
91 |
- df_data (pd.DataFrame): Input DataFrame.
|
|
|
92 |
|
93 |
Returns:
|
94 |
+
- str: Name of the column containing date-type values.
|
95 |
"""
|
96 |
+
for column in df_data.columns:
|
97 |
+
# Check if the column can be converted to datetime
|
98 |
try:
|
99 |
pd.to_datetime(df_data[column])
|
100 |
return column
|
|
|
104 |
# Return None if no date column is found
|
105 |
return None
|
106 |
|
107 |
+
def preprocess_data(self, df_data: pd.DataFrame, list_columns: list, target_column: str) -> pd.DataFrame:
|
108 |
"""
|
109 |
+
Transform date-related data in the DataFrame.
|
110 |
|
111 |
Args:
|
112 |
+
- df_data (pd.DataFrame): Input DataFrame.
|
113 |
+
- list_columns (list): List of column names to retain.
|
114 |
+
- target_column (str): Name of the target column.
|
115 |
|
116 |
Returns:
|
117 |
+
- pd.DataFrame: Transformed DataFrame.
|
118 |
"""
|
119 |
+
# Make a copy of the input DataFrame to avoid modifying the original data
|
120 |
+
df_data = df_data.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
list_columns.append(target_column)
|
|
|
|
|
|
|
123 |
|
124 |
+
# Drop columns not in list_columns
|
125 |
+
columns_to_drop = [col for col in df_data.columns if col not in list_columns]
|
126 |
+
df_data.drop(columns=columns_to_drop, inplace=True)
|
127 |
|
128 |
+
# Find the date column
|
129 |
+
date_column = self.find_date_column(df_data)
|
130 |
|
131 |
+
if date_column is None:
|
132 |
+
raise ValueError("No date column found in the provided list of columns.")
|
133 |
+
else:
|
134 |
+
print("date_column", date_column)
|
135 |
+
# Parse date information only if a valid date column is found
|
136 |
+
df_data[date_column] = pd.to_datetime(df_data[date_column]) # Convert 'date' column to datetime format
|
137 |
+
df_data['day'] = df_data[date_column].dt.day # Extract day of the month
|
138 |
+
df_data['month'] = df_data[date_column].dt.month # Extract month
|
139 |
+
df_data['year'] = df_data[date_column].dt.year # Extract year
|
140 |
|
141 |
# Cyclical Encoding for Months
|
142 |
+
df_data['month_sin'] = np.sin(2 * np.pi * df_data['month'] / 12) # Cyclical sine encoding for month
|
143 |
+
df_data['month_cos'] = np.cos(2 * np.pi * df_data['month'] / 12) # Cyclical cosine encoding for month
|
144 |
|
145 |
# Day of the Week
|
146 |
+
df_data['day_of_week'] = df_data[date_column].dt.weekday # Extract day of the week (0 = Monday, 6 = Sunday)
|
147 |
|
148 |
# Week of the Year
|
149 |
+
df_data['week_of_year'] = df_data[date_column].dt.isocalendar().week.astype(int) # Extract week of the year as integer
|
150 |
|
151 |
+
df_data.drop(columns=[date_column], axis=1, inplace=True) # Drop the original date column
|
152 |
|
153 |
+
return df_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
def train_model(self, train: pd.DataFrame, target_column, list_columns) -> tuple:
|
156 |
"""
|
|
|
206 |
# Return None for all outputs in case of an error
|
207 |
return None, None, None
|
208 |
|
209 |
+
def plot_line_graph(self, y_val, y_val_pred):
|
|
|
|
|
210 |
|
211 |
+
# Take only the first 1000 data points
|
212 |
+
num_data_points = 1000
|
213 |
+
y_val = y_val[:num_data_points]
|
214 |
+
y_val_pred = y_val_pred[:num_data_points]
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
# Create Plotly figure
|
217 |
+
fig = make_subplots(rows=1, cols=1)
|
218 |
+
|
219 |
+
# Add actual vs predicted traces to the figure (line plot)
|
220 |
+
fig.add_trace(go.Scatter(x=np.arange(len(y_val)), y=y_val, mode='lines', name='Actual'), row=1, col=1)
|
221 |
+
fig.add_trace(go.Scatter(x=np.arange(len(y_val)), y=y_val_pred, mode='lines', name='Predicted'), row=1, col=1)
|
222 |
+
|
223 |
+
# Update layout
|
224 |
+
fig.update_layout(title='Actual vs Predicted Over Time', xaxis_title='Time', yaxis_title='Value')
|
225 |
+
|
226 |
+
# Show interactive plot
|
227 |
+
fig.show()
|
228 |
+
return fig
|
229 |
+
|
230 |
+
def plot_scatter_plot(self, y_val, y_val_pred):
|
231 |
+
|
232 |
+
# Take only the first 1000 data points
|
233 |
+
num_data_points = 1000
|
234 |
+
y_val = y_val[:num_data_points]
|
235 |
+
y_val_pred = y_val_pred[:num_data_points]
|
236 |
+
|
237 |
+
# Create Plotly figure
|
238 |
+
fig = make_subplots(rows=1, cols=1)
|
239 |
+
|
240 |
+
# Add scatter plots for actual vs predicted (scatter plot)
|
241 |
+
fig.add_trace(go.Scatter(x=np.arange(len(y_val)), y=y_val, mode='markers', name='Actual', marker=dict(color='blue', size=8)), row=1, col=1)
|
242 |
+
fig.add_trace(go.Scatter(x=np.arange(len(y_val)), y=y_val_pred, mode='markers', name='Predicted', marker=dict(color='orange', size=8)), row=1, col=1)
|
243 |
+
|
244 |
+
# Update layout
|
245 |
+
fig.update_layout(title='Actual vs Predicted Over Time (Scatter Plot)', xaxis_title='Time', yaxis_title='Value')
|
246 |
+
|
247 |
+
# Show interactive plot
|
248 |
+
fig.show()
|
249 |
+
|
250 |
+
return fig
|
251 |
|
252 |
|
253 |
def predict_sales_for_date(self, input_data, model: xgb.Booster) -> float:
|
|
|
371 |
# Split the string by comma and convert it into a list
|
372 |
column_list = column_list.split(",")
|
373 |
|
|
|
|
|
|
|
|
|
374 |
|
375 |
text = self.audio_to_text(audio_path)
|
376 |
|
|
|
386 |
trained_model, y_val, y_val_pred, validation = self.train_model(train_df, target_column, column_list)
|
387 |
|
388 |
# Plot interactive evaluation for training
|
389 |
+
line_graph = self.plot_line_graph(y_val, y_val_pred)
|
390 |
+
|
391 |
+
scatter_plot = self.plot_scatter_plot(y_val, y_val_pred)
|
392 |
|
393 |
# Predict sales for the specified date using the trained model
|
394 |
predicted_value = self.predict_sales_for_date(input_data, trained_model)
|