import gradio as gr import torch import librosa from transformers import Wav2Vec2Processor, AutoModelForCTC import zipfile import os import firebase_admin from firebase_admin import credentials, firestore from datetime import datetime import json import tempfile # Initialize Firebase firebase_config = json.loads(os.environ.get('firebase_creds')) cred = credentials.Certificate(firebase_config) firebase_admin.initialize_app(cred) db = firestore.client() # Load the ASR model and processor MODEL_NAME = "eleferrand/xlsr53_Amis" processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) model = AutoModelForCTC.from_pretrained(MODEL_NAME) def transcribe(audio_file): try: audio, rate = librosa.load(audio_file, sr=16000) input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids)[0] return transcription.replace("[UNK]", "") except Exception as e: return f"處理文件錯誤: {e}" def transcribe_both(audio_file): start_time = datetime.now() transcription = transcribe(audio_file) processing_time = (datetime.now() - start_time).total_seconds() return transcription, transcription, processing_time def toggle_language(switch): """Switch UI text between English and Traditional Chinese""" if switch: return ( "阿美語轉錄與修正系統", "步驟 1:音訊上傳與轉錄", "步驟 2:審閱與編輯轉錄", "步驟 3:使用者資訊", "步驟 4:儲存與下載", "音訊輸入", "轉錄音訊", "原始轉錄", "更正轉錄", "年齡", "以阿美語為母語?", "儲存更正", "儲存狀態", "下載 ZIP 檔案" ) else: return ( "Amis ASR Transcription & Correction System", "Step 1: Audio Upload & Transcription", "Step 2: Review & Edit Transcription", "Step 3: User Information", "Step 4: Save & Download", "Audio Input", "Transcribe Audio", "Original Transcription", "Corrected Transcription", "Age", "Native Amis Speaker?", "Save Correction", "Save Status", "Download ZIP File" ) # Interface with gr.Blocks() as demo: lang_switch = gr.Checkbox(label="切換到繁體中文 (Switch to Traditional Chinese)") title = gr.Markdown("Amis ASR Transcription & Correction System") step1 = gr.Markdown("Step 1: Audio Upload & Transcription") step2 = gr.Markdown("Step 2: Review & Edit Transcription") step3 = gr.Markdown("Step 3: User Information") step4 = gr.Markdown("Step 4: Save & Download") with gr.Row(): audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input") transcribe_button = gr.Button("Transcribe Audio") original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5) corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5) age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25) native_speaker_input = gr.Checkbox(label="Native Amis Speaker?", value=True) save_button = gr.Button("Save Correction") save_status = gr.Textbox(label="Save Status", interactive=False) download_button = gr.Button("Download ZIP File") download_output = gr.File() # Toggle language dynamically lang_switch.change( toggle_language, inputs=lang_switch, outputs=[title, step1, step2, step3, step4, audio_input, transcribe_button, original_text, corrected_text, age_input, native_speaker_input, save_button, save_status, download_button] ) transcribe_button.click(transcribe_both, inputs=audio_input, outputs=[original_text, corrected_text]) save_button.click(store_correction, inputs=[original_text, corrected_text, audio_input, age_input, native_speaker_input], outputs=save_status) download_button.click(prepare_download, inputs=[audio_input, original_text, corrected_text], outputs=download_output) demo.launch()